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The rheology and distribution of interparticle contact lifetimes for gravity-driven, dense granular
flows down an inclined plane are studied using large-scale, three dimensional, granular dynamics
simulations. We show that for cohesionless particles, rather than observing a large number of long-
lived contacts as might be expected for dense flows, binary collisions of the minimal possible duration
predominate. In the hard particle limit, the rheology conforms to Bagnold scaling, where the shear
stress is quadratic in the strain rate. As the particles are made softer, however, we find significant
deviations from Bagnold rheology; the material flows more like a viscous fluid. We attribute this
change in the collective rheology of the material to subtle changes in the contact lifetime distribution
involving the emergence of an increasing number of long-lived contacts in the system.
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The rheology of granular materials is relevant to many
areas of nature and industry, from mountain avalanches
and mud-slides, to grain transport and storage [1, 2]. A
particularly simple class of granular flow, which continues
to be studied, is gravity-driven, dense granular flow down
a rough, inclined plane. This geometry is the archety-
pal granular flow with which one can study the relation
between the stress state and the dynamics and struc-
ture, i.e. constitutive relation of the granular material.
Indeed, a number of recent well-controlled experiments
[3–6], and large-scale simulations [7–11], have motivated
numerous theories that capture some of the features of
inclined plane flows [12–19].

To date, however, the most generally accepted treat-
ment of granular rheology is still the physical picture put
forward by Bagnold over 50 years ago [20–22]. Bagnold
rheology describes a mechanism of momentum transfer
between particles in adjacent layers, and assumes instan-
taneous binary collisions between the particles during the
flow. Under these assumptions, the inverse strain rate is
the only relevant time scale in the problem leading to a
constitutive relationship between the shear stress σ and
strain rate γ̇ of the form

σ = κγ̇2, (1)

where κ is independent of γ̇.
Despite recent concerns on the validity of Bagnold’s

original experiments [23], and the applicability of the the-
ory [24, 25], Eq. 1 has proved rather successful in predict-
ing the rheology of dense granular flow down an inclined
plane [3, 8]. However, this is somewhat add odds to the
idea that Bagnold theory should apply only to rapid flows
of hard-spheres where binary collisions predominate. By
their very nature, dense flows [26] are thought to be con-
trolled by enduring, multiple interparticle contacts form-
ing extended stress-bearing structures [12] and/or large
length-scale cooperative dynamics [17, 27, 28]. Previous
work [8] revealed hat the stresses arising from the contact

forces are practically an order of magnitude larger than
the kinetic stresses generated via velocity fluctuations.

To provide further insight into this problem, we an-
alyze the interparticle contact dynamics of dense flows
and relate these to the bulk rheology. We find that life-
times of two contacting particles are of the same order
of magnitude as the binary collision time and insensi-
tive to the location of the pair within the flowing pile.
In contrast, the strain rate is strongly dependent on the
height and varies considerably over the parameter space
studied here. The scenario that emerges, in some sense
goes against the grain: Even though the flows are dense,
the dynamics at the microstructural scale remain domi-
nated by short-time collisions. In the hard-particle limit,
when the inverse strain rate - the shear time - is much
longer than the collision time, Bagnold theory, Eq. 1, ac-
curately describes the flow. When the particles are soft,
the Bagnold relation must be supplemented by an ad-
ditional term linear in the strain rate. The linear term
appears to result from the creation of a small popula-
tion of long-lived interparticle contacts (comparable to
the shear time). One of the principal results of this work
is that the functional form of the constitutive law is sen-
sitively dependent on changes in the long-time tail of the
interparticle contact time distribution.

Our simulations are based on the model developed
by Cundall and Strack [29], and Walton [30], and has
been shown to quantitatively match experimental data
[3, 8, 31]. We study N = 35, 900 monodisperse spheres
of diameter d and mass m, flowing on a rough base of
length 20d, and width 20d, tilted an angle θ with respect
to gravity. We use periodic boundary conditions in the
flow and vorticity directions. The height h, of the flow-
ing pile is between 90d < h < 100d depending on the
angle of inclination. The inelastic contact interactions
are modeled as a spring-dashpot for forces both normal
(n) and tangential (t) to the interparticle contact plane.
For details see Ref. 8. The parameters of most relevance
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in this study are kn,t and γn,t, the elastic and dissipative
constants for interparticle interactions. At existing con-
tacts we include a friction model that obeys the Coulomb
yield criterion while the non-dissipative normal forces are
modeled by Hookean springs. Two particles are identi-
fied as contacting neighbors when their surfaces overlap.
Similar results were found for Hertzian contacts [32]. For
Hookean contacts the coefficient of restitution parameter-
izes the dissipative nature of the interparticle collisions
and is given by en = exp (−γntcol/2), where tcol is the
binary collision time,

tcol = π[2kn/m − γ2

n/4]−1/2. (2)

We kept en = 0.88 fixed throughout this study, while
varying kn and γn. We set kt = 2kn/7 and γt = 0.
For example, for kn = 2 × 105mg/d, γn = 50τ−1, where
τ =

√

d/g. The coefficient of friction is µ = 0.5. The
time step for all simulations with kn ≤ 2 × 105mg/d was
δt = 10−4τ . For kn = 2 × 106mg/d, δt = 2.5 × 10−5, for
kn = 2× 107mg/d, δt = 10−5 and for kn = 2× 109mg/d,
δt = 10−6. After a steady state had been achieved (up to
six billion time steps for the largest stiffness), we collected
lifetime data for runs of several million time steps.

In Fig. 1(a) we show the distributions, P (τ∗

c ≡ τc/tcol),
of two-particle contact lifetimes, τc, normalized by the bi-
nary collision time, tcol for spring constants ranging from
kn = 2 × 103 – 2 × 109mg/d. Under this time rescaling
all distributions exhibit a prominent short-time peak near
the binary collision time τ∗

c = 1, and an approximately
exponential decay towards longer contact lifetimes. As
kn is reduced this exponential tail becomes broader in-
dicating an increasing density of enduring contacts. The
data shown in Fig. 1 is depth-averaged over contacts in
the flowing pile away from the bottom boundary and the
top saltating layer.

The normalized mean contact lifetime exhibits essen-
tially no depth dependence as shown in Fig. 2(a). Given
the stress–free boundary condition at the free surface of
the pile, γ̇ → 0 there so the normalized inverse strain

rate, γ̇∗
−1

≡ γ̇−1/tcol, shown in Fig. 2(b) must be height
dependent. It also depends strongly on kn, varying by
several orders of magnitude in our data set.

As shown in Fig. 3, over several orders of magni-
tude in kn, the mean normalized contact time remains
nearly constant while the maximum contact time τcmax

,
extracted from the distributions in Fig. 1, decreases with
increasing stiffness, reflecting the narrowing of the con-
tact time distributions as the particles become harder.
The average number of contacting neighbors per particle
nc, shown in Fig. 3(b), tends to the binary collision limit
(= 0) as the particles become harder.

Based on these data one might expect that the Bag-
nold constitutive law holds in the system as the dura-
tion of typical interparticle contacts is small compared
to the shear time allowing one to imagine that momen-
tum transport is dominated by effectively instantaneous
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FIG. 1: Dependence of the distributions P (τ∗

c ) of the depth-
averaged normalized contact lifetimes, τ∗

c ≡ τc/tcol, on parti-
cle stiffness kn = 2× [109, 107, 105, 104, 103]mg/d. Flow at
θ = 23◦.
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FIG. 2: Depth profiles of, (a) the normalized contact time
τ∗

c (line is a guide to the eye) and, (b) the normalized shear

time γ̇∗
−1

≡ γ̇−1/tcol, for different particle stiffness, kn = 2×
[109 (△), 107 (▽), 106 (⊲), 105 (♦), 104 (�), 103(◦)]mg/d.
z = 0 defines the bottom of the pile. Flow at θ = 23◦.

binary collisions.To test this we now turn to a charac-
terization of the granular rheology by fitting the velocity
profile of the flowing material to the prediction of a mod-
ified Bagnold relation [33] of the form

σ = κγ̇2 + βγ̇, (3)

where the coefficients κ and β are determined by a least-
squares fit to the velocity data. To characterize the devi-
ations from standard Bagnold rheology consider the ra-
tio of the shear stress in the Bagnold and linear forms:
Ω ≡ β/κγ̇. Ω measures the competition between momen-
tum transfer through binary collisions (κ) and enduring
contacts (β).

Figure 4 shows the dependence of Ω, on particle stiff-
ness for a system flowing at θ = 23◦. In the hard-particle
limit we expect Ω −→ 0. This is practically achieved al-
ready for kn ≥ 2 × 105mg/d, indicating that this value
of kn is appropriate for modeling hard (glass) particles,
validating this choice in earlier work [8, 31]. As the par-
ticles are made softer, Ω grows and the constitutive law
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FIG. 3: Dependence on the particle stiffness kn, of, (a) the
depth-averaged contact lifetime < τ∗

c > (filled circles) and
maximum contact time τ∗

cmax
(open squares), both normal-

ized by tcol, and (b) the depth-averaged number of contact
neighbors per particle, nc. Flow at θ = 23◦.

approaches a linear relation reminiscent of a viscous fluid.
Since Ω is inversely dependent on γ̇, it is no surprise that
it grows monotonically as one approaches the free surface
as is shown by the inset to Fig. 4. We have examined
the (weaker) dependence of Ω on all other particle in-
teraction parameters, e.g. friction and inelasticity; these
results will be discussed elsewhere [32].
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FIG. 4: Dependence of the parameter Ω on the stiffness kn

for θ = 23◦. Taken from the middle of the pile at h/2. Inset:
Height dependence of Ω, for kn = 2 × 104.

The picture that emerges is that even for the dense
flows, as those discussed here, the contact dynamics of all

systems studied are dominated by binary collisions. The
rheology of these granular systems, however, changes dra-
matically with particle hardness going from the quadratic
in shear rate Bagnold law for hard particles to a nearly
linear in shear rate or viscous relation for softer particles.
The dramatic change in the constitutive relation appears
to be controlled by a more subtle feature of the contact
time distribution than simply the mean value. In all our
data, the mean contact lifetime remains dominated by
frequent, rapid, binary contacts that endure for no more
than tcol, such that 〈τc〉γ̇ ≪ 1. Nevertheless there is a

significant change in the rheology of the granular medium
as the system goes from obeying the Bagnold relation to
acting like a viscous fluid upon reducing particle hard-
ness. This rheological change appears to be due to the
growth of the width of the contact time distribution re-
flecting the appearance of more long-lived contacts in the
softer systems. In all cases, however, the size of this pop-
ulation of enduring contacts remains small in comparison
to the more common short-lived contacts with τc ∼ tcol.

We suspect that growth of a small population of long-
lived contacts leads to the formation of transient stress-
bearing structures within the flowing material. These
structures span streamlines in the flow and thus elasti-
cally transmit stress across their length in proportion to
the rate of particle impacts with these structures ∼ γ̇.
This reasoning suggests that the shear rate is the appro-
priate local clock with which to measure contact lifetimes
τc so that the dimensionless contact lifetime τcγ̇ is the
fundamental quantity controlling deviations from Bag-
nold rheology in the flowing state. Given similar contact
time distributions, faster flows should then deviate more
strongly from the Bagnold prediction than slower flows.
This is similar to the conclusions of Campbell [34, 35] for
sheared systems.

To explore this point, we use the inclination angle of
the pile θ to adjust the overall shear rate and study the
resulting change in the observed rheology as parameter-
ized by Ω. In Fig. 5 we plot Ω vs θ for a system of
soft (kn = 2 × 104mg/d) particles where we expect to
see generically pronounced deviations from the Bagnold
constitutive relation. Indeed, Ω increases with increas-
ing angle. The contact time distribution is less strongly
dependent on θ so the principal effect of the changing
inclination angle is to shift all the dimensionless contact
lifetimes to larger values as the fundamental clock-rate γ̇
of the system increases. An examination of the contact
lifetime distribution allows us to rationalize this some-
what counter-intuitive result that rapid flows conform
less to the Bagnold model.

In summary, we have provided extensive simulation re-
sults on the rheology and interparticle contact statistics
of gravity-driven, dense, granular flows. We observe a
transition from a Bagnold-type constitutive relation to
one reminiscent of a Newtonian fluid as the particles are
made softer. This work addresses the question of re-
lating the local collisional dynamics of the particles at
the microscale to the collective rheology the many-body
system. Based on our numerical data, we suggest a gen-
eralized Bagnold relation [33] to account for this transi-
tion and to quantify the changing rheology. Furthermore,
despite the näıve guess that the flow in such dense sys-
tems should be controlled by long-lived, stress-bearing
structures, it turns out that for both hard and soft par-
ticles the microscopic particle dynamics is dominated by
frequent, short-time, binary collisions. When examining
the entire contact lifetime distribution, however, we note
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that as the constituent particles are made softer there is
a growth of the width of the contact lifetime distribu-
tion due to the emergence of more long-lived contacts as
measured in units of inverse shear rate. We propose that
the emergence of these atypically long-lived contacts is
related to the dramatic change in the granular rheology
with particle stiffness and thereby rationalize the surpris-
ing result that larger inclination angles, and hence faster
flows are actually less Bagnold in rheology than slower
flows at smaller inclination angles. It appears that the
constitutive relation of granular media interpolates be-
tween these extremes and is controlled by a combination
of the particle hardness and flow rate. It remains still
to ask if other properties of the interparticle interaction
modify the collective rheology of the system as strongly
as does the particle hardness.
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