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Screened and Unscreened Phases in Sedimenting Suspensions
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A coarse-grained stochastic hydrodynamical description of velocity and concentration fluctuations in
steadily sedimenting suspensions is constructed and analyzed using self-consistent and renormalization-
group methods. We find a nonequilibrium phase transition from an “unscreened” phase in which
we recover the Caflisch-Luke [Phys. Fluids28, 759 (1985)] divergence of the velocity variance to
a “screened” phase where the fluctuations have a finite correlation length depending on the volume
fraction f as f21y3, in agreement with Segrèet al. [Phys. Rev. Lett.79, 2574 (1997)] (if their obser-
vation of af-independent diffusivity is used), and the velocity variance isindependentof system size.
[S0031-9007(98)08015-6]
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Sedimentation [1] is a rich and complex phenomeno
in suspension science and a frontier problem in noneq
librium statistical mechanics. The average sedimentat
speedysed of solute particles drifting down in a solven
is determined by balancing the driving force (gravity
against the dissipative force (viscous drag). Giant no
thermal fluctuations in the velocity and concentration field
in a steadily settling suspension, observed even for no
Brownian systems, have been a puzzle for some yea
Caflisch and Luke (CL) [2] showed, for steady sediment
tion in a container of smallest linear dimensionL, that the
assumption of purelyrandomlocal concentration fluctua-
tions led to velocity fluctuations with a varianceky2l , L.
Most experiments, however, findnodependence ofky2l on
L [3–5], although Ladd’s simulations [6] and the data o
Tory et al. [7] appear to be consistent with CL.

In this Letter we propose a resolution of this puzzle b
means of a set of coarse-grained, fluctuating nonlinear
drodynamic equations for the long-wavelength dynami
of concentration and velocity fluctuations in a suspensi
settling steadily in the2z direction, at vanishingly small
Reynolds number. Our theory is similar in spirit to th
Koch-Shaqfeh (KS) [8] “Debye-like” screening approac
but differs in several important details and predictions.

The central conclusion of our study is that there a
two qualitatively distinct nonequilibrium phases for a
sedimenting suspension. In the “unscreened” phaseky2l
diverges asL, as in CL and, in addition, concentration
fluctuations with wave vectork ­ sk', kzd relax at a
rate ~ k1y2. The “screened” phase is characterized by
correlation lengthj similar to that predicted by KS such
thatky2l , L for L ø j andky2l , j for L ¿ j. Deep
in the screened phase we predictj , f21y3, where f

is the particle volume fraction. This is in agreement wit
the experiments of Segrèet al. [5], but not with KS [8].
The relaxation rate in the screened phase isindependent
of k for kz ­ 0 and k' ! 0. Detailed, experimentally
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testable expressions for the structure factor and veloc
correlations in the screened phase are presented after
outline our calculations. The two phases are separa
in our “phase diagram” (Fig. 1) by a strikingcontinuous
nonequilibrium phase transitionwherej diverges at least
as rapidly assK 2 Kcd21y3 as a control parameterK is
decreased towards a critical valueKc.

The hydrodynamic equations we used to arrive at the
results are

≠c
≠t

1 v ? ===c ­ fD0'=2
' 1 D0z=2

zgc 1 === ? fsr, td

(1)

and

h=2yisr, td ­ mRgPizcsr, td , (2)

wherecsr, td andvsr, td are the fluctuations about the mea
concentrationc0 and the mean sedimentation velocit
2ysedẑ, respectively. We justify these equations briefl
below; for a more detailed discussion we refer the reader
Ref. [9]. Equation (1) is the anisotropic randomly force
advection-diffusion equation with bare uniaxial diffusivi
ties sD0z , D0'd and a random stirring forcefsr, td [10].
The Stokes equation, Eq. (2), which expresses the bala
between the driving by gravity and the dissipation by th
viscosityh, describes how the concentration fluctuation
produce velocity fluctuations. HeremRg is the buoyancy-
reduced weight of a particle, while the pressure field h
been eliminated by imposing incompressibility via th
transverse projection operatorPij ­ dij 2 =i=js=2d21.

Hydrodynamic equations such as Eqs. (1) and (2) ar
from a coarse graining of the microscopic equations of m
tion. The latter, for the main case of interest here, viz
non-Brownian suspensions at zero Reynolds number,
the deterministic equations of Stokesian dynamics forN
hydrodynamically coupled particles and are known to b
chaotic [11]. The noise or random stirring currentfsr, td
© 1998 The American Physical Society
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FIG. 1. Dynamical phase diagram for sedimentation. Belo
the solid line in the parameter space spanned by the anisotro
factors for the noise and diffusivities velocity and concentratio
fluctuations have a finite screening length in the limit o
vanishing wave vector. This region is called screened abov
In the upper region called unscreened the screening leng
becomes infinite. The dashed line represents the set of valu
for the anisotropy factors where the hydrodynamics obe
detailed balance. The inset shows the behavior of the pha
boundary in the limit of large noise and diffusivity in the
vertical direction as compared to the horizontal plane.

and the diffusivities in Eq. (1) represent a phenomenolog
cal description of the deterministic chaos at length scal
below the coarse-graining length, (which must be large
compared to the particle radiusa). We use these hydrody-
namic equations to predict the velocity and concentratio
fluctuations at length scales large compared to, driven by
the random stirring at short distances.

We assume, as is reasonable, thatfsr, td is Gaussian
white noise with uniaxial symmetry:

k fisr, tdfjsr0, t0dl ­ 2c0N
ij
0 dsr 2 r0ddst 2 t0d (3)

with an anisotropic noise amplitudeN
ij
0 ­ N0'd

'
ij 1

N0zd
z
ij, where d

z
ij and d

'
ij are the projectors along and

normal to thez axis, respectively. Because of the non
equilibrium origin of the noise and diffusion constants
we may not [12] assume thatN0'yN0z ­ D0'yD0z as
would be true for the Langevin equation of a dilute sus
pension at thermal equilibrium. Note that no correlation
have been fed in via the noise: any that emerge in t
long-wavelength properties are a result of the interplay
advection and diffusion.

Let us now consider the nature of the spatiotempor
correlations implied by Eqs. (1) and (2). We will focus
on the structure factor for concentration fluctuations

Ssqd ; c21
0

Z
ddrkcs0dcsrdle2iq?r (4)

from which the velocity structure factor can be derive
through Eq. (2). If we ignore the advective nonlinearit
v ? ===c, then Ssqd can be computed by straightforward
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Fourier transformation of Eq. (1), resulting in

Ssqd ­ S0sqd ;
N0'q2

' 1 N0zq2
z

D0'q2
' 1 D0zq2

z

. (5)

Using Eq. (5) in Eq. (2) we can computeky2l as a func-
tion of the system sizeL with the result

ky2l ,
Z

q.1yL

Ssqd
q4 , L . (6)

In other words, neglecting large-scale advection by th
velocity fluctuations leads to the CL [2] result.

To include the effect of the advective nonlinearity we
have performed a self-consistent mode coupling calcu
tion [13] on Eqs. (1)–(3). Our results can be expressed
terms of a renormalizedrelaxation rate

Rsqd ­ D'sqdq2
' 1 Dzsqdq2

z 1 Gsqd (7)

and arenormalizedstructure factor of the form

Ssqd ­
N'sqdq2

' 1 Nzsqdq2
z

Rsqd
. (8)

The quantitiesDz,'sqd and Nz,'sqd represent renormal-
ized diffusivities and noise amplitudes [14]. But, mos
importantly, the advective nonlinearity to lowest-order pe
turbation theory leads to an additional term in the reno
malization of the relaxation rate which is of the form
Gsqd ­ gsqdq2

'yq2. The singular form of this correction
to the diffusivity is due to the long-ranged nature of th
hydrodynamic interaction. Starting from the stochast
hydrodynamic equations, Equations (1)–(3), it turns o
that the amplitude of this singular contribution becomes
constant, limq!0 gsqd ~ IsbN , bDd, which depends on the
anisotropy ratios of the noise and diffusivity coefficients

bN ­
N'

Nz
, and bD ­

D'

Dz
. (9)

In particularIsbN , bDd is proportional tobN 2 bD and
consequently may change sign upon varying the noise a
diffusivity ratios. We understand the above proportion
ality of I (setting Dz ­ D' for simplicity) by looking
at the effect of a noise-injected concentration fluctuatio
(NICF) on an imposed concentration inhomogeneity.
Nz ¿ N' [see Eq. (3)], the typical NICF varies predomi-
nantly alongz and the inducedz velocity alternates in
sign mainly alongz thus reinforcing the inhomogeneity.
However, if N' ¿ Nz, the NICF and hence the sign of
the resultingz velocity both vary mainly in thexy plane,
so that the flow breaks up the inhomogeneity and thus e
hances effective diffusion.

We restrict our attention toIsbN , bDd $ 0, for which
the model can be treated either within dynamic renorma
ization group theory or using self-consistency method
although it is possible that the model itself is meaningfu
outside that regime.
5945
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We start our discussion at the borderline of stabilit
bN ­ bD . For these parameter values it can be show
that the fluctuating hydrodynamic equations describe a d
namics which obeys detailed balance [15]: the advecti
nonlinearity does not affect the equal-time correlation
andSsqd in particular is just the constantN'yD'. There
are singularities inN',z andD',z which we discuss later.

For bN $ bD , detailed balance is violated and a sin
gular diffusion termGsqd is generated within perturbation
theory. In order to analyze the dynamics in this regime w
use one-loop self-consistent theory (mode coupling th
ory) and arrive at the expression

Gsqd ­ c0

µ
mRg

h

∂2 Z
k

qiPizskdkjPjzsqd
k2q2

3
fSsq 2 kd 2 Sskdg
Rskd 1 Rsq 2 kd

(10)

with Rsqd given by (7), and similar self-consistent integra
equations forD'sqd, Dzsqd, N'sqd, andNzsqd. We find
that there are two types of iteratively stable solution
to these coupled self-consistent equations: those w
gsq ! 0d . 0, which we obtain below the solid line in
the phase diagram spanned by the two anisotropy rat
(screened phase in Fig. 1), and those withgsq ! 0d ­ 0,
which arises for values of the anisotropy parameters th
lie above the solid line and below the dashed line of th
same figure, i.e., in the unscreened phase.

Screened phase.—In the screened phase,Gsqd is of
the form gq2

'yq2 in the smallq limit, with g a finite
constant. This implies that the structure factor at a sm
wave number becomes

Ssqd .
N'q2

' 1 Nzq2
z

D'q2
' 1 Dzq2

z 1 gq2
'yq2

(11)

with N',z andD',z constants. From Eq. (11) we can de
fine a correlation lengthj ; sD'ygd1y2 such forq' ¿
1yj the structure factor is not significantly affected b
advection. On the other hand, forq' ø 1yj the in-plane
structure factor readsSsq', qz ­ 0d . sN'ygdq2

', while
Ssq' ­ 0, qzd . sNzyDzd. Physically, this means that a
long wavelength advection strongly suppresses in-pla
concentration fluctuations.

Using Eq. (11) in conjunction with Eq. (2), one find
that for length scalesL less thanj, ky2l ~ L, consistent
with CL, while for L large compared toj, ky2l ~ j.
Velocity fluctuations on length scales small compared toj

are thus highly correlated while they become uncorrelat
at larger length scales.

Deep inside the screened phase, i.e., for largeg, the
renormalization of the diffusion and noise parameters
negligible and we can explicitly computeg, and thusj,
by inserting Eq. (8) in Eq. (10) using the bare values f
theN ’s andD’s. We find

j ­ 8

µ
mRg
hD

∂22y3

c
21y3
0

µ
1 2

2
bN

∂21y3

, (12)
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where for simplicity we have setD0' ­ D0z ­ D. Ac-
cording to Eq. (12), the correlation length increases
we decrease thebN parameter (which could be done by
increasing thethermal noise amplitude) and diverges a
bN ­ 2. Strictly speaking, asbN ! 2, the diffusivity
corrections are no longer negligible, and the actual dive
gence ofj is probably stronger than (12) and occurs at
larger value ofbN . An explicit analytical (but lengthy)
result for the correlation lengthj can be obtained through-
out the screened phase as a function of both anisotro
parameters [9] and the phase boundary can also be co
puted. The phase boundary resulting from this result
shown in Fig. 1 as the solid line separating the screen
from the unscreened phases.

Unscreened phase.—The hydrodynamic equations
obey detailed balance [15] along the dashed linebN ­
bD in Fig. 1. As a consequence the ratio of noise t
diffusivity can be identified as a direction-independen
“noise temperature.” Furthermore, the structure fact
Ssqd becomes a constantD'yN' and we recover the CL
result. In conjunction with an exponent identity resulting
from Galilean invariance this is enough to determine th
dynamic exponent exactly,z ­ dy2 2 1. This implies
that the diffusivities and noise amplitudes scale asq2ey2 ­
q23y2 for long wavelength. Even though there are now
singular corrections toDz,'sqd and Nz,'sqd, the anoma-
lousGsqd term is zero. For parameter values in the regim
between the dashed line (detailed balance line) and t
solid line, which marks the location of the nonequilibrium
phase transition, renormalization group methods may
used to determine the renormalization of the noise and d
fusivity amplitudes. In view of the results from the above
self-consistency calculation (g ­ 0 in the unscreened
phase) and the exact results at the detailed balance l
it is quite likely that the resulting renormalization group
flow will tend towards a fixed point which obeys detailed
balance. We leave the details of such an investigation f
a future publication [9].

The analysis of our hydrodynamic equations thus co
firms that screening can suppress the CL divergence
ky2l with L, as argued by KS, while it allows for a sec-
ond, unscreened phase. This result may help explain
conflicting results onky2l obtained by different workers
[3–7]. The self-consistent structure factor Eq. (5) we ob
tained differs significantly from the one proposed by KS
Experimental tests will thus be of considerable importanc
Measurements ofSsqd, for example, by particle imaging
velocimetry [16], would constitute the most direct tes
of the theory since our prediction thatSsq', qz ­ 0d ~

q2
' does not hold in the KS description. Detailed mea

surements ofSsqd for sedimenting solutions are not yet
available. However, Segrèet al. [5] do report that the size
dependence of the amplitudeky2l of the velocity fluctua-
tions depends on a characteristic length scalejS such that
ky2l ~ jS for length scalesL ¿ jS while for L ø jS ,
ky2l grows withL. They report thatjS , af21y3 with
f the particle volume fraction.
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Our correlation lengthj, in Eq. (12), has the same
physical interpretation asjS . Deep in the screened phase
i.e., for IsbN , bDd ¿ 0, j can be written as

jsfd , smRgyhDd22y3af21y3IsbN , bDd21y3. (13)

On scaling grounds, we expect thatD ~ dyrmsj with
dyrms the root mean square of the velocity field fluctua
tions. Experimentally,dyrmsj is found to be independent
of volume fractionf. In that case, Eq. (13) reproduce
the experimentally observed volume-fraction dependen
in contrast to KS [8]. It should be noted that this volum
fraction dependence of the correlation length implies th
there is a fixed number of colloids within a correlation vo
ume independent of volume fraction.

The observation of a transition from the screened to t
unscreened phase would obviously be the most conc
sive evidence supporting our theory, in particular, if th
transition were accompanied by a divergence of the velo
ity fluctuation correlation length. Even in the absence
such direct evidence, the observation of screened beh
ior combined with our theory requires that the anisotropi
in the noise and diffusivity lie in the lower region of ou
dynamical phase diagram, Fig. 1. A complete test of o
theory thus requires measurement of theN and D pa-
rameters. These could be obtained from the measurem
of the steady-state static structure factorSsqd, both along
the z direction and in thex-y plane, coupled with tracer
diffusion measurements.

Finally, it would be interesting to vary the effective
noise and diffusion constants in a controlled manner in
experiment. Despite the absence of a microscopic the
it is clear that at zero Reynolds number the parameterK
can depend only on Peclet number Pe and particle sh
[17]. Decreasing Pe (i.e., increasing the role ofisotropic
thermal diffusion) by reducing the mass-density differen
of between particles and solvent is likely to drive th
system into the unscreened phase. Thus by repeating
experiments of Segréet al. [5] with colloids that are more
nearly density matched to the solvent one could test o
prediction of a transition to an unscreened phase.
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