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Screened and Unscreened Phases in Sedimenting Suspensions
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A coarse-grained stochastic hydrodynamical description of velocity and concentration fluctuations in
steadily sedimenting suspensions is constructed and analyzed using self-consistent and renormalization-
group methods. We find a nonequilibrium phase transition from an “unscreened” phase in which
we recover the Caflisch-Luke [Phys. Flui@8, 759 (1985)] divergence of the velocity variance to
a “screened” phase where the fluctuations have a finite correlation length depending on the volume
fraction ¢ as ¢ ~'/3, in agreement with Segrét al. [Phys. Rev. Lett79, 2574 (1997)] (if their obser-
vation of a¢-independent diffusivity is used), and the velocity variancen@ependenbf system size.
[S0031-9007(98)08015-6]

PACS numbers: 82.70.Dd, 05.40.+j, 05.45.+b, 05.70.Ln

Sedimentation [1] is a rich and complex phenomenonestable expressions for the structure factor and velocity
in suspension science and a frontier problem in nonequicorrelations in the screened phase are presented after we
librium statistical mechanics. The average sedimentatiooutline our calculations. The two phases are separated
speedv,y Of solute particles drifting down in a solvent in our “phase diagram” (Fig. 1) by a strikingpntinuous
is determined by balancing the driving force (gravity) nonequilibrium phase transitiowhere¢ diverges at least
against the dissipative force (viscous drag). Giant nonas rapidly a3k — K.)~!/? as a control parametef is
thermal fluctuations in the velocity and concentration fieldsdecreased towards a critical valie.
in a steadily settling suspension, observed even for non- The hydrodynamic equations we used to arrive at these
Brownian systems, have been a puzzle for some yearsesults are
Caflisch and Luke (CL) [2] showed, for steady sedimenta- c
tion in a container of smallest linear dimensibnthat the — 4+ v-Ve=[Dg, V] + Do, Vi]e + V - £(r,1)
assumption of purelyandomlocal concentration fluctua-
tions led to velocity fluctuations with a varian@e?) ~ L. 1)

Most experiments, however, fimbdependence di?)on 4
L [3-5], although Ladd’s simulations [6] and the data of ’
Tory et al. [7] appear to be consistent with CL. nVvi(r, 1) = mpgPic(r,1), (2)

In this Letter we propose a resolution of this puzzle bywherec(r, r) andv(r, ¢) are the fluctuations about the mean
means of a set of coarse-grained, fluctuating nonlinear hyconcentrationcy, and the mean sedimentation velocity
drodynamic equations for the long-wavelength dynamics-v..qZ2, respectively. We justify these equations briefly
of concentration and velocity fluctuations in a suspensiorbelow; for a more detailed discussion we refer the reader to
settling steadily in the-z direction, at vanishingly small Ref. [9]. Equation (1) is the anisotropic randomly forced
Reynolds number. Our theory is similar in spirit to the advection-diffusion equation with bare uniaxial diffusivi-
Koch-Shagfeh (KS) [8] “Debye-like” screening approachties (Dy,, Dy, ) and a random stirring forcé(r, ) [10].
but differs in several important details and predictions. The Stokes equation, Eq. (2), which expresses the balance

The central conclusion of our study is that there arebetween the driving by gravity and the dissipation by the
two qualitatively distinct nonequilibrium phases for a viscosity n, describes how the concentration fluctuations
sedimenting suspension. In the “unscreened” plfase  produce velocity fluctuations. Hereg g is the buoyancy-
diverges asl, as in CL and, in addition, concentration reduced weight of a particle, while the pressure field has
fluctuations with wave vectok = (k,k,) relax at a been eliminated by imposing incompressibility via the
rate « k'/2. The “screened” phase is characterized by d@ransverse projection operatB; = §,; — V,V;(V?)~.
correlation lengthé similar to that predicted by KS such  Hydrodynamic equations such as Eqgs. (1) and (2) arise
that(v?) ~ Lfor L < ¢ and(v?) ~ £for L > ¢. Deep  from a coarse graining of the microscopic equations of mo-
in the screened phase we predict~ ¢ ~!/3, where¢  tion. The latter, for the main case of interest here, viz.,
is the particle volume fraction. This is in agreement withnon-Brownian suspensions at zero Reynolds number, are
the experiments of Segmt al. [5], but not with KS [8].  the deterministic equations of Stokesian dynamicsNor
The relaxation rate in the screened phassdependent hydrodynamically coupled particles and are known to be
of k for k, = 0 andk; — 0. Detailed, experimentally chaotic [11]. The noise or random stirring currdt, z)
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10 05 . Fourier transformation of Eq. (1), resulting in
' Norqi + No.g?
80 L R S(@) = Solg) = - ——xL 5
. Do1 g1 + Doq:
_.~"Unscreened '
60 o= g Using Eqg. (5) in Eq. (2) we can compu{e?) as a func-
DL 0 05 tion of the system sizé& with the result
a0 . ] S(q)
Screened (v?) ~ j — ~ L. (6)
20- i g>1/L 4
P In other words, neglecting large-scale advection by the
0= : : ‘ : velocity fluctuations leads to the CL [2] result.
0 20 40 60 80 100 To include the effect of the advective nonlinearity we
NL have performed a self-consistent mode coupling calcula-
N tion [13] on Eqgs. (1)—(3). Our results can be expressed in

terms of arenormalizedrelaxation rate
FIG. 1. Dynamical phase diagram for sedimentation. Below

the solid line in the parameter space spanned by the anisotropy _ 2 2
factors for the noise and diffusivities velocity and concentration R(q) = D.(@)q1 + D:(a)gz + I'q) (7)
fluctuations have a finite screening length in the limit of )

vanishing wave vector. This region is called screened aboveand arenormalizedstructure factor of the form

In the upper region called unscreened the screening length 5 5

becomes infinite. The dashed line represents the set of values N Ni(q)q1 + Nz(‘l)qz

for the anisotropy factors where the hydrodynamics obeys Sq) = R(q) : (8)
detailed balance. The inset shows the behavior of the phase

bourldary in 'the limit of large noise a.nd diffusivity in the The quantitiesDZL(q) and N, L(q) represent renormal-
vertical direction as compared to the horizontal plane. ized diffusivities )and noise aimplitudes [14]. But, most
importantly, the advective nonlinearity to lowest-order per-
and the diffusivities in Eq. (1) represent a phenomenologiturbation theory leads to an additional term in the renor-
cal description of the deterministic chaos at length scalegalization of the relaxation rate which is of the form
below the coarse-graining length(which must be large T'(q) = y(q)g% /¢2. The singular form of this correction
compared to the particle radiug. We use these hydrody- to the diffusivity is due to the long-ranged nature of the
namic equations to predict the velocity and concentratiomydrodynamic interaction. Starting from the stochastic
fluctuations at length scales large compared tiiven by hydrodynamic equations, Equations (1)—(3), it turns out

the random stirring at short distances. ~ that the amplitude of this singular contribution becomes a
We assume, as is _reasonable, that, r) is Gaussian constant, lig—o ¥(q) = I(By, Bp), Which depends on the
white noise with uniaxial symmetry: anisotropy ratios of the noise and diffusivity coefficients
S, fi, ) =2 NIs( — 1)o@t — ¢ 3 N D
(Fie,0f (1) = 2cNg 8 — ¥)8(t = 1) (3) b= Mo and gy = 2o )

N; D,

with an anisotropic noise amplitud®y’ = Ny, 8 +
No. 85, where §; and &;; are the projectors along and In particular/(By, Bp) is proportional togy — Bp and
normal to thez axis, respectively. Because of the non-consequently may change sign upon varying the noise and
equilibrium origin of the noise and diffusion constants, diffusivity ratios. We understand the above proportion-
we may not [12] assume tha¥y, /No. = Dy, /Dy, as ality of I (setting D, = D, for simplicity) by looking
would be true for the Langevin equation of a dilute sus-at the effect of a noise-injected concentration fluctuation
pension at thermal equilibrium. Note that no correlationsNICF) on an imposed concentration inhomogeneity. If
have been fed in via the noise: any that emerge in th&/: > N, [see Eq. (3)], the typical NICF varies predomi-
long-wavelength properties are a result of the interplay ofantly alongz and the induced velocity alternates in
advection and diffusion. sigh mainly alongz thus reinforcing the inhomogeneity.
Let us now consider the nature of the spatiotemporatHowever, if N, > N, the NICF and hence the sign of
correlations implied by Egs. (1) and (2). We will focus the resultingz velocity both vary mainly in thery plane,

on the structure factor for concentration fluctuations so that the flow breaks up the inhomogeneity and thus en-
hances effective diffusion.
S(g) = ¢p! / dr{c(0)c(r)ye iaT 4) We restrict our attention té(By, 8p) = 0, for which

the model can be treated either within dynamic renormal-
from which the velocity structure factor can be derivedization group theory or using self-consistency methods,
through Eq. (2). If we ignore the advective nonlinearity although it is possible that the model itself is meaningful
v - V¢, then S(q) can be computed by straightforward outside that regime.
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We start our discussion at the borderline of stability,where for simplicity we have sddy, = Dy, = D. Ac-
By = Bp. For these parameter values it can be showrtording to Eq. (12), the correlation length increases as
that the fluctuating hydrodynamic equations describe a dywe decrease thgy parameter (which could be done by
namics which obeys detailed balance [15]: the advectivéincreasing thehermal noise amplitude) and diverges at
nonlinearity does not affect the equal-time correlations8y = 2. Strictly speaking, a3y — 2, the diffusivity
andS(q) in particular is just the constant, /D, . There corrections are no longer negligible, and the actual diver-
are singularities iV, . andD , ; which we discuss later. gence of¢ is probably stronger than (12) and occurs at a

For By = Bp, detailed balance is violated and a sin-larger value ofBy. An explicit analytical (but lengthy)
gular diffusion terml’(q) is generated within perturbation result for the correlation length can be obtained through-
theory. In order to analyze the dynamics in this regime weut the screened phase as a function of both anisotropy
use one-loop self-consistent theory (mode coupling theparameters [9] and the phase boundary can also be com-

ory) and arrive at the expression puted. The phase boundary resulting from this result is
2 P (K)k; P, shown in Fig. 1 as the solid line separating the screened
I'(q) = c0<ng> f 4iPic( 2) z (@) from the unscreened phases.
k k%q Unscreened phase-The hydrodynamic equations
[S(q — k) — S(k)] obey detailed balance [15] along the dashed e =
X RK) + R(q — k) (10)  Bp in Fig. 1. As a consequence the ratio of noise to

diffusivity can be identified as a direction-independent

with R(q) given by (7), and similar self-consistent integral “noise temperature.” Furthermore, the structure factor
equations fotD | (q), D (q), N.(q), andN (q). We find  §(q) becomes a constaft, /N, and we recover the CL
that there are two types of iteratively stable solutionsresult. In conjunction with an exponent identity resulting
to these coupled self-consistent equations: those witfrom Galilean invariance this is enough to determine the
y(g — 0) > 0, which we obtain below the solid line in dynamic exponent exactly, = d/2 — 1. This implies
the phase diagram spanned by the two anisotropy ratiagat the diffusivities and noise amplitudes scalga¥? =
(screened phase in Fig. 1), and those with — 0) = 0, 4732 for long wavelength. Even though there are now
which arises for values of the anisotropy parameters thasingular corrections t®. | (q) and N, , (q), the anoma-
lie above the solid line and below the dashed line of thaousI'(q) termis zero. For parameter values in the regime
same figure, i.e., in the unscreened phase. between the dashed line (detailed balance line) and the

Screened phase-In the screened phasé(q) is of  solid line, which marks the location of the nonequilibrium
the form yq7/q> in the smallg limit, with y a finite  phase transition, renormalization group methods may be
constant. This implies that the structure factor at a smallised to determine the renormalization of the noise and dif-

wave number becomes fusivity amplitudes. In view of the results from the above
N4> + N.g? self-consistency calculationy(= 0 in the_ unscreened _

S(q) = 3 S (11) phase) and the exact results at the detailed balance line
Diqi + D:q2 + vqi/q it is quite likely that the resulting renormalization group

with N, , andD, , constants. From Eq. (11) we can de- flow will tend towards a fixed point which obeys detailed
fine a correlation lengtlf = (D, /y)"/? such forg, >  balance. We leave the details of such an investigation for
1/¢ the structure factor is not significantly affected by a future publication [9].
advection. On the other hand, fgr < 1/¢ the in-plane The analysis of our hydrodynamic equations thus con-
structure factor read$(q ., ¢. = 0) = (N, /y)q%, while  firms that screening can suppress the CL divergence of
S(q. = 0,q9.) = (N,/D,). Physically, this means that at (v?) with L, as argued by KS, while it allows for a sec-
long wavelength advection strongly suppresses in-planend, unscreened phase. This result may help explain the
concentration fluctuations. conflicting results or{v?) obtained by different workers
Using Eg. (11) in conjunction with Eq. (2), one finds [3—7]. The self-consistent structure factor Eq. (5) we ob-
that for length scaleg less thané, (v?) « L, consistent tained differs significantly from the one proposed by KS.
with CL, while for L large compared tc, (v?) = ¢&.  Experimental tests will thus be of considerable importance.
Velocity fluctuations on length scales small compared to Measurements af(q), for example, by particle imaging
are thus highly correlated while they become uncorrelatestelocimetry [16], would constitute the most direct test
at larger length scales. of the theory since our prediction th&{q,,q, = 0) =
Deep inside the screened phase, i.e., for laygeghe g1 does not hold in the KS description. Detailed mea-
renormalization of the diffusion and noise parameters isurements ofS(q) for sedimenting solutions are not yet
negligible and we can explicitly compute, and thus¢é,  available. However, Seget al. [5] do report that the size
by inserting Eq. (8) in Eq. (10) using the bare values fordependence of the amplitude?) of the velocity fluctua-
theN's andD’s. We find tions depends on a characteristic length séglsuch that
_2s3 3 (V?) x &g for length scaled > £ while for L < &,
- 8(%) 051/3<1 B i) (12) (v?) grows withL. They report thatts ~ a¢ ~1/3 with
nD BN ’ ¢ the particle volume fraction.
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Our correlation lengthé, in Eq. (12), has the same *Present address: Department of Physics & Astronomy,
physical interpretation a&s. Deep in the screened phase, University of Pennsylvania, Philadelphia, PA 19104.

i.e., forI(By, Bp) > 0, & can be written as TPresent address: Lyman Laboratory of Physics, Harvard
University, Cambridge, MA 02138.
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