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Capillary-Wave and Chain-Length Effects at Polymer/Polymer Interfaces
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A continuum-space bead-spring model is used to study the phase behavior of binary blends
of homopolymers and the structure of the interface between the two immiscible phases. Results
of numerical simulations using molecular dynamics supplemented by Monte Carlo exchanges are
presented. The structure of the interface is investigated as a function of immiscibility, chain length, and
system size. Capillary waves are observed, and their measurements allows us to determine the surface
tension. We propose a universal method of measuring the interfacial width in terms of second moments
of the different contributions to the first derivative of the interfacial profile. Predictions of this method
are directly verified. [S0031-9007(97)04965-X]

PACS numbers: 61.41.+e, 61.25.Hq, 64.60.Cn
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The mixing of two different homopolymer specie
say, A and B, in the molten state often results in
system of two immiscible phases. The structure of
interface between the phases has been the object of se
theoretical studies [1,2] which use as a starting po
the Flory-Huggins free energy of the blend and its we
known associated interaction parameterxAB [3]. These
theories predict that the intrinsic order parameter pro
of an interface located atz0 is well approximated by [4]

cszd ­ c0 tanhf2sz 2 z0dyw0g , (1)

where cszd ; frAszd 2 rBszdgyfrAszd 1 rBszdg, rI is
the number density of speciesI, andc0 is the bulk value
of the order parameter. According to the same theo
[2], the intrinsic interfacial widthw0 is predicted to
follow w0 ­ as6xABd21y2, while the surface tensiong ­
skBTya2d sxABy6d1y2. Here, a is the statistical segmen
length, kB is the Boltzmann constant, andT is the
temperature.

On the experimental side, neutron reflectivity expe
ments [5] have measured a value ofw0 that is sys-
tematically and substantially larger than that predict
theoretically from thexAB associated with these blend
More recent experiments [6] seem to support the propo
explanation [5] that the presence of capillary waves [7]
the interface could be responsible for this discrepancy.

Of similar importance is the effect of chain lengthN
on the interfacial width, since theoretical treatments
mostly in the limit of infiniteN. Some finite-chain-length
corrections have been proposed [8], but none of th
have been tested systematically.

With these motivations in mind, a simple continuou
space (CS) model has been developed [9] in order to st
binary blends of homopolymers. It is the purpose of th
Letter to present results, as derived from this model,
capillary-wave and chain-length effects at the interface
immiscible homopolymer blends. Our approach diffe
significantly from previous numerical studies which u
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lattice models almost exclusively [10]. For systems wi
interfaces, CS models have interesting features: besi
their inherent spatial isotropy and the absence of pinnin
they offer a simple way to determine the surface tensi
from the measured pressure tensor [11]. Moreov
provided the forces are short ranged, theoretical wo
[12] suggests that interfaces in the continuum exhibit
roughening transition.

The CS model used here has been described in m
detail elsewhere [9]. In this model, the polymer chains a
represented by attachingN soft spherical beads of massm
using a finitely extensible spring potential. The softne
of the beads, or mers, is set by the interaction potential.
binary system is built by constructing a large numberM
of such chains, of given typeA or B, and enclosing them
in a virtual box having the desired boundary conditions.

We use molecular dynamics (MD) as the simulatio
algorithm, supplemented by Monte Carlo (MC) typ
exchanges in order to improve the sampling of pha
space. The time evolution of the coordinates of all chai
is resolved through Newton’s equation of motion (EOM
integrated using a velocity-Verlet algorithm [13]. Th
motion of the chains is coupled to a heat bath acti
through a weak stochastic forceWstd and a corresponding
viscous damping term with friction coefficientG. Besides
improving the diffusion of the system in phase spac
this coupling has the practical advantage of stabilizi
the numerical calculation, especially in the presence
the energy fluctuations induced by the MC exchang
Including these terms, the EOM of meri reads

m
d2ri

dt2 ­ 2=iU 2 mG
dri

dt
1 Wistd . (2)

The last termWistd is a white noise having an averag
strength determined by temperature and the friction co
ficient through the fluctuation-dissipation theorem. In th
viscous drag term,G has to be carefully chosen to avoi
overdamping so that the motion of the mers is dominat
© 1998 The American Physical Society 309
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by their inertia. Finally, the conservative force term de
rives from a potential energyU having two contributions:
the interaction potentialUIJ acting between all mers, re-
sponsible for excluded volume effects, and an attracti
potential holding adjacent mers along the chainUch. For
the first contribution in a mixture of two homopolyme
species, the interaction potentialUIJsrijd between beadsi
and j of types I , J ­ hA, Bj separated by a distancerij

is taken as the repulsive core of a central-force Lenna
Jones (LJ) 6:12 potential,

UIJsrijd ­ 4eIJ

"√
s

rij

!12

2

√
s

rij

!6

1
1
4

#
, (3)

for rij , rc ­ 21y6s and zero otherwise. Instead o
using the Lorentz-Berthelot mixing rules, we choos
s ­ sA ­ sB, andeij ­ s1 1 dIJdde, whered $ 0 is
a small parameter controlling the miscibility anddIJ

is the Kronecker delta. Our choice in energy param
ters can be seen as a special (symmetric) case ofd ­
feAB 2

1
2 seAA 1 eBBdgye, which represents the kind of

interactions used in simple lattice systems such as in
Flory-Huggins theory. Here and s are, respectively,
parameters fixing the energy and length scales. Acco
ingly, our results are reported in terms of these natu
units, usingt ­ ssmyed1y2 for the time scale. All the
results reported here are obtained usingG ­ 0.5t21 at a
constant overall number densityr ­ 0.85s23 (isochoric)
and a temperatureT ­ 1.0eykB. Chain sizeN varies
from monomers to30-mers.

Simply by varying d, while leaving the temperature
constant, one can induce a phase transition from
homogeneous blend to a system with two coexistin
phases. This effect is reminiscent of what is done
recent experiments reported by Gehlsenet al. [14] in
which the phase separation of binary mixtures is studi
as a function of the difference in deuterium between tw
otherwise identical polymer species. Thus, in principl
the model and an MD simulation method would b
adequate to study the kinetics of phase separation
binary blends. However, the time scale involved i
the unmixing transition—occurring through the diffusiv
motion of the chains—is extremely long. To properl
sample the phase space in a reasonable calculation ti
we supplement the MD moves with an MC procedu
relabeling the type of the homopolymer chainssA $ Bd
with a Metropolis transition rule [15]. Our exchang
attempt rate is approximatelyM chains pert [9].

Cubic simulation cells of volumeL3 ­ NMyr and
with full periodic boundary conditions were used to stud
the bulk properties of our model [9]. The equilibrium
bulk order parameterc0sM, N , dd was measured for
different sizes as a function of the immiscibility paramete
d. A finite-size scaling analysis [9] of our results
involving the multiple-histogram technique [16], was use
to extract the critical immiscibility valuedcsNd associated
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with a system of infinite sizesM ! `d. For N . 2, our
data are well described byNdc ­ 3.40s5dkBTye, clearly
evidencing a1yN behavior of the critical immiscibility, as
predicted by the Flory-Huggins theory.

The finite-size effects on the interfacial properties o
multiphase systems are not as well known as for th
bulk. Capillary-wave effects [7], confinement [17], or
finite-chain-size [8] corrections to properties such a
the interfacial width or the surface tension are sti
under active investigation. We shall now address the
questions.

Once the critical miscibility parameter is known, we ca
build antiperiodic immiscible systems (atdcyd , 1) and
study the interfacial properties of the model; that is, w
use simulation cells having an antiperiodic [18,19] bound
ary condition in one direction and a volumeL2L', where
L' is the length perpendicular to the interface. Figure
shows the interfacial profile of the order parameterCszd
of such systems, obtained by spatially averagingcsrd in
xy slices, perpendicular to the antiperiodic directionz, and
then averaging the resulting profiles in phase space w
the proper offset (since the zero of the interface is trans
tionally invariant). It is tempting to fit the order parame
ter profile directly to the same intrinsic interfacial function
Cszd ­ c0 tanhs2zywd, and thus associate a widthw with
the interface. However, our averaging of the profile in
corporates the effect of the intrinsic interfacial widthw0

as well as any other perturbation broadening the interfac
such as capillary waves. To separate both effects, a s
tematic study of the interfacial profile for different system
sizes has to be performed.

In capillary wave theory [7], the roughnessksDz0d2l1y2

of the zero of a sharp interfacez0sx, yd is found to be, in
the linearized regime of small distortions,

ksDz0d2l ­
kBT
2pg

ln

√
ql

qL

!
, (4)

FIG. 1. The interfacial profilesCszd defined as thexy-
slice averages ofcsrd for a system of 4000 10-mers with
antiperiodic boundary conditions. The values ofdcyd are as
indicated. The lines are from a least-squares fit to the functio
Cszd ­

P2
i­1 ai erfs

p
p zywid.
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where qL is the lower cutoff driven by the system size
and generally taken to bepyL while ql is the upper
cutoff, usually assumed to be driven by some correlati
length such aspysc0w0d, wherec0 is some number. It
is assumed here thatL' ! ` so that the roughness is
strictly controlled byL.

We shall now derive a general and formal argume
allowing us to add the roughening effects of capillar
waves to the intrinsic interfacial width, which we sha
measure universally as a moment. If one assumes t
capillary waves can be decoupled from fluctuations
density and in order parameter, the averaged interfac
profile Cszd can be written as the convolution of the
intrinsic interfacial profilecsz 2 z0d, and the probability
P sz0ddz0 of finding the interface atz0,

Cszd ­
Z `

2`
csz 2 z0dP sz0d dz0 . (5)

By applyingdydz on each side, one finds thatC0szd is the
convolution of two well-bounded functions,c 0sz 2 z0d
andP sz0d. We associate a functional measureyf fg to a
well-bounded functionf as [20]

yf fg ;
R`

2` z2fszd dzR`

2` fszd dz
­

2
d2

dk2 f̃skdjk­0

f̃s0d
, (6)

where f̃ is the Fourier transform off. For real f, it
can be shown [21] using the convolution theorem th
yfC0g ­ yfc 0g 1 yfP g, which we rewrite as

D2 ­ D2
0 1

kBT
2pg

ln

√
L

cD0

!
, (7)

where D2 ; yfC0g now measures the total interfacia
width while D

2
0 ; yfc 0g is related to the intrinsic interfa-

cial width w0. The last term comes from Eq. (4) and th
fact thatyfP g ­ ksDz0d2l. We reiterate here that Eq. (7)
is of general validity since it does not rely on any specifi
functional form and only uses well-controlled approxima
tions. For example, if one fitsCszd to either a simple
c0 tanhf2zywg or to

Pn
i­1 aierfs

p
p zywid [22], then D2

is p2w2y48 or
Pn

i­1 aiw
2
i ys2p

Pn
i­1 aid, respectively.

In Fig. 2, we present results from fittingCszd to n ­ 2
error functions. The dependence ofD2 on both the linear
sizeL of the system (whileL' ¿ D) andd clearly evi-
dences the presence of capillary waves. To our knowled
this is the first time that capillary waves have been o
served in computer simulations of polymer interfaces [19
We fit our data to the expressionD2 ­ ad 1 bd lnsLd,
wherebd , 1ygL (subscriptL indicates that the surface
tension has been derived from capillary-wave effects). B
measuring the surface tensiongP independently from the
difference in the pressures (obtained from the virial [13
hence the subscriptP) perpendicular and parallel to the
interface [11],gP ­ sP' 2 PkdL', one gets another es-
timate of the surface tension, and can compare it una
biguously withgL [23]. Figure 3 shows the two different
measures ofg for a monomeric system. For allN, our
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FIG. 2. Linear-size and miscibility-parameter dependence
the interfacial width for various systems of 10-mers. Values
dcyd are as indicated. The lines are least-squares fits toD2 ­
ad 1 bd lnsLd. Systems are of sizeL2L', with L' ¿ D.

data show that withgL ­ kBTy2pbd both measures are
consistent, thus evidencing the origin of the broadening
being capillary waves and the validity of Eq. (7).

The other parametersad obtained from the least-
squares fits are always negative for the systems conside
here. This is understandable given the large values ofbd

(i.e., smallg) and the fact thatad ­ D
2
0 2 bd lnscD0d.

This last equation can be solved numerically forD0 once
we knowad andbd. It turns out that our data set only ha
a solution forc * 13, thus imposing a bound on cutof
ql . Figure 4 shows values ofD0 extracted by assuming
c ­ 13 and plotted such as to compare with theo
which predicts thatw2

0yN , 1yNxAB, where NxAB is
the measure of immiscibility in the Flory-Huggins theor
[with the critical valuesNxABdc ­ 2], such that2yNxAB

corresponds todcyd for our model.
The L' dependence of the interfacial width has als

been investigated. ForL' * 4D (and dcyd & 0.8), we
find no effect of L' on D, in contrast with recent
studies [17] that observed thatD , L

1y2
' for near-critical

FIG. 3. Two different estimates of the surface tension f
monomeric systems. Surface tensiongP is obtained from
L'sP' 2 Pkd while gL ­ kBTy2pbd, where bd is obtained
from a plot similar to Fig. 2.
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FIG. 4. The scaled intrinsic interfacial widthD2
0yN as esti-

mated from Eq. (7) andc ­ 13. The chain length varies from
monomers to 30-mers. The data are plotted so that the redu
miscibility dcyd is equivalent for all chain lengths.

immiscibilities. In these studies, however,L' is such
that the interface is confined so that the tails of th
order parameter do not relax to the bulk value. In th
present work, this effect is taken care of by using on
results from systems for whichL' is large enough so that
there exists a wide region (going through the antiperiod
boundary if the interface is centered in the system)
which c is fully relaxed at6c0sdd.

In Fig. 5, the effect of the chain length on the surfac
tension is shown. From self-consistent field results (a
asN ! `), N1y2g , sNxABd1y2. Accordingly, our result
collapses very well whenN1y2g is plotted in terms of
dcyd.

We have shown that a continuous-space model with
rather simple potential allows us to study the interfac
between immiscible binary blends of homopolymers. Th
natural isotropy of an off-lattice model coupled with
a weak mismatch between the polymer chains made
possible for us to observe strong capillary-wave effec
at the interface of moderately small systems and evalu
the surface tension unambiguously.

FIG. 5. The miscibility-parameter dependence of the surfa
tension for systems of different chain lengths. The scaling for
holds very well for strongly immiscible blends and long chain
sN . 5d.
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