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Capillary-Wave and Chain-Length Effects at Polymer/Polymer Interfaces
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A continuum-space bead-spring model is used to study the phase behavior of binary blends
of homopolymers and the structure of the interface between the two immiscible phases. Results
of numerical simulations using molecular dynamics supplemented by Monte Carlo exchanges are
presented. The structure of the interface is investigated as a function of immiscibility, chain length, and
system size. Capillary waves are observed, and their measurements allows us to determine the surface
tension. We propose a universal method of measuring the interfacial width in terms of second moments
of the different contributions to the first derivative of the interfacial profile. Predictions of this method
are directly verified. [S0031-9007(97)04965-X]

PACS numbers: 61.41.+e, 61.25.Hq, 64.60.Cn

The mixing of two different homopolymer species, lattice models almost exclusively [10]. For systems with
say, A and B, in the molten state often results in a interfaces, CS models have interesting features: besides
system of two immiscible phases. The structure of theheir inherent spatial isotropy and the absence of pinning,
interface between the phases has been the object of sevetiay offer a simple way to determine the surface tension
theoretical studies [1,2] which use as a starting poinfrom the measured pressure tensor [11]. Moreover,
the Flory-Huggins free energy of the blend and its well-provided the forces are short ranged, theoretical work
known associated interaction paramega [3]. These [12] suggests that interfaces in the continuum exhibit no
theories predict that the intrinsic order parameter profileoughening transition.

of an interface located at is well approximated by [4] The CS model used here has been described in more
detail elsewhere [9]. In this model, the polymer chains are
¥(2) = gotant2(z — zo)/wol, (1)  represented by attachirg soft spherical beads of mass

_ ) using a finitely extensible spring potential. The softness
where ¢(z) = [pa(z) — pp(2)]/[pa(z) + pp(2)], p1 IS ofthe beads, or mers, is set by the interaction potential. A
the number density of speuésan'd:po is the bulk value _ binary system is built by constructing a large number
of the or(_:ier.pa}rameter. Acco_rdmg to the same theoriegs s ch chains, of given typé or B, and enclosing them
[2], the Intrinsic |nt§{;§1C|aI _widthw, is predicted 10 in a virtual box having the desired boundary conditions.
follow Wo = “(6X1f}§) » while the surface tensiop = We use molecular dynamics (MD) as the simulation
(kpT/a®) (xap/6)"/". Here,a is the statistical segment 50qrithm, supplemented by Monte Carlo (MC) type
length, k5 is the Boltzmann constant, andl is the  gychanges in order to improve the sampling of phase
temperature. , o _space. The time evolution of the coordinates of all chains
On the experimental side, neutron reflectlv[ty eXperi-is resolved through Newton's equation of motion (EOM),
ments [5] have measured a value of that is SYS- integrated using a velocity-Verlet algorithm [13]. The
tematlc_ally and substantially Ie}rger th_an that predicteqygtion of the chains is coupled to a heat bath acting
theoretically from they,p associated with these blends. through a weak stochastic for8(r) and a corresponding

More recent experiments [6] seem to support the proposegs.q,s damping term with friction coefficiefit Besides
explanation [5] that the presence of capillary waves [7] a‘mproving the diffusion of the system in phase space,

the interface could be responsible for this discrepancy. ihis coupling has the practical advantage of stabilizing

Of similar importance is the effect of chain length  he humerical calculation, especially in the presence of

on the interfacial width, since theoretical treatments argyq energy fluctuations induced by the MC exchanges.
mostly in the limit of infiniteN. Some finite-chain-length Including these terms, the EOM of mareads
corrections have been proposed [8], but none of these '

have been tested systematically. d*r; dr;

With these motivations in mind, a simple continuous- mﬁ =-ViU - ml"z + Wil1). )
space (CS) model has been developed [9] in order to study
binary blends of homopolymers. It is the purpose of thisThe last termW;(¢) is a white noise having an average
Letter to present results, as derived from this model, fostrength determined by temperature and the friction coef-
capillary-wave and chain-length effects at the interface oficient through the fluctuation-dissipation theorem. In the
immiscible homopolymer blends. Our approach differsviscous drag terml” has to be carefully chosen to avoid
significantly from previous numerical studies which useoverdamping so that the motion of the mers is dominated
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by their inertia. Finally, the conservative force term de-with a system of infinite sizéM — »). ForN > 2, our
rives from a potential energy having two contributions: data are well described by, = 3.40(5)kzT /€, clearly
the interaction potential/;; acting between all mers, re- evidencing al /N behavior of the critical immiscibility, as
sponsible for excluded volume effects, and an attractivgredicted by the Flory-Huggins theory.
potential holding adjacent mers along the chéiif. For The finite-size effects on the interfacial properties of
the first contribution in a mixture of two homopolymer multiphase systems are not as well known as for the
species, the interaction potentid};(r;;) between beads  bulk. Capillary-wave effects [7], confinement [17], or
and j of typesl,J = {A, B} separated by a distanag, finite-chain-size [8] corrections to properties such as
is taken as the repulsive core of a central-force Lennardthe interfacial width or the surface tension are still
Jones (LJ) 6:12 potential, under active investigation. We shall now address these
12 6 questions.
_ T [ o 1 Once the critical miscibility parameter is known, we can
Un(rij) = 46“[(;3}») (r,,-) N 4 :| 3) build antiperiodic immiscible systems (4t/8 < 1) and
study the interfacial properties of the model; that is, we
for rij <r. = 2765 and zero otherwise. Instead of use simulation cells having an antiperiodic [18,19] bound-
using the Lorentz-Berthelot mixing rules, we chooseary condition in one direction and a voluniéL |, where
o =04 =o0p, ande;; = (1 + 6;;6)e, whered = 0is L, is the length perpendicular to the interface. Figure 1
a small parameter controlling the miscibility an®}; = shows the interfacial profile of the order paramei&iz)
is the Kronecker delta. Our choice in energy parameeof such systems, obtained by spatially averaging) in
ters can be seen as a special (symmetric) casé of xy slices, perpendicular to the antiperiodic directigand
leap — %(EAA + €pp)]/€, which represents the kind of then averaging the resulting profiles in phase space with
interactions used in simple lattice systems such as in thine proper offset (since the zero of the interface is transla-
Flory-Huggins theory. Here and o are, respectively, tionally invariant). It is tempting to fit the order parame-
parameters fixing the energy and length scales. Accorder profile directly to the same intrinsic interfacial function
ingly, our results are reported in terms of these naturalV'(z) = ¢, tanh2z/w), and thus associate a widthwith
units, usingr = o(m/€)'/? for the time scale. All the the interface. However, our averaging of the profile in-
results reported here are obtained uslhg= 0.57! at a  corporates the effect of the intrinsic interfacial widtl
constant overall number densjiy= 0.850 3 (isochoric)  as well as any other perturbation broadening the interface,
and a temperaturd = 1.0e/kg. Chain sizeN varies such as capillary waves. To separate both effects, a sys-
from monanmers to30-mers. tematic study of the interfacial profile for different system
Simply by varying 8, while leaving the temperature sizes has to be performed.
constant, one can induce a phase transition from a In capillary wave theory [7], the roughne&g z)?)'/?
homogeneous blend to a system with two coexistingf the zero of a sharp interfacg(x, y) is found to be, in
phases. This effect is reminiscent of what is done irthe linearized regime of small distortions,

recent experiments reported by Gehlsehal.[14] in knT p
which the phase separation of binary mixtures is studied (Azo)?) = =2~ In(—l> , ()]
as a function of the difference in deuterium between two 2my \4L

otherwise identical polymer species. Thus, in principle,
the model and an MD simulation method would be
adequate to study the kinetics of phase separation in
binary blends. However, the time scale involved in
the unmixing transition—occurring through the diffusive
motion of the chains—is extremely long. To properly 051
sample the phase space in a reasonable calculation time, _
we supplement the MD moves with an MC procedure
relabeling the type of the homopolymer chai@s— B)
with a Metropolis transition rule [15]. Our exchange 05t
attempt rate is approximatel chains perr [9].

Cubic simulation cells of volumd.> = NM/p and
with full periodic boundary conditions were used to study
the bulk properties of our model [9]. The equilibrium

bulk ‘order parameterjo(M, N, 5) was measured for FIG. 1. The interfacial profiles¥(z) defined as the
. . . . e ey e 1. z Xy-
different sizes as a function of the immiscibility parameter; - averages ofj(r) for a system of 4000 10-mers with

6. A finite-size scaling analysis [9] of our results, antiperiodic boundary conditions. The values&f/s are as
involving the multiple-histogram technique [16], was usedindicated. The lines are from a least-squares fit to the function
to extract the critical immiscibility valué.(N) associated W(z) = Y-, a; erf(/7 z/wy).
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where ¢ is the lower cutoff driven by the system size 16.0
and generally taken to ber/L while g; is the upper 14.0
cutoff, usually assumed to be driven by some correlation
: 12.0

length such asr/(c'wg), wherec’ is some number. It
is assumed here thdt, — % so that the roughness is 10.0
strictly controlled byL. “ 80F

We shall now derive a general and formal argument 601} ¢
allowing us to add the roughening effects of capillary sl -
waves to the intrinsic interfacial width, which we shall *
measure universally as a moment. If one assumes that 200

caplll_ary waves can be decoupled from fluctugtlons in 0-02.6 57 28 29 30 31 32 33 34 35 36
density and in order parameter, the averaged interfacial In(L)
profile W(z) can be written as the convolution of the . _ o
P . . s FIG. 2. Linear-size and miscibility-parameter dependence of
Intrinsic mter.fac'lal profl'legb(z — 20), and the probability the interfacial width for various sys%/efns of 10-mersp. Values of
P(z0)dz of finding the interface a, 5./8 are as indicated. The lines are least-squares fits’te-
e as + bs In(L). Systems are of size?L , with L, > A.
v = [ e - WP ©)

By applyingd/dz on each side, one finds thidt(z) is the  data show that withy;, = kzT /27 bs both measures are
convolution of two well-bounded functiong’(z — z9)  consistent, thus evidencing the origin of the broadening as
andP(zg). We associate a functional measuief ] to a  being capillary waves and the validity of Eq. (7).

well-bounded functiory as [20] The other parameteras obtained from the least-
© 2 _d g fits are always negative for the systems considered
~.2°f(2)dz =f (k)= squares ys neg y
v[f]= ffoc fj(fz())dz = & j{(O)) =0 ) (6) here. This is understandable given the large valuds;of

(i.e., smally) and the fact thati; = A% — bs In(cAy).
where f is the Fourier transform of. For real f, it  This last equation can be solved numerically foy once
can be shown [21] using the convolution theorem thatve knowas andbs. It turns out that our data set only has

v[P'] = v[y'] + v[P], which we rewrite as a solution forc = 13, thus imposing a bound on cutoff
kpT L q;. Figure 4 shows values df, extracted by assuming
AT = Aj + — H(T> (7) ¢ =13 and plotted such as to compare with theory
2my €20 which predicts thatw?/N ~ 1/N yag, where N yaz is

where A? = y[W¥'] now measures the total interfacial the measure of immiscibility in the Flory-Huggins theory
width while Aj = v[y'] is related to the intrinsic interfa- [with the critical value(N y4p). = 2], such that2/N y.p
cial width wy. The last term comes from Eq. (4) and the corresponds t@../é for our model.

fact thatv[P] = ((Azp)%). We reiterate here that Eq. (7) The L, dependence of the interfacial width has also
is of general validity since it does not rely on any specificbeen investigated. Fdt, = 4A (andé$./é =< 0.8), we
functional form and only uses well-controlled approxima-find no effect of L, on A, in contrast with recent
tions. For example, if one fit¥(z) to either a simple studies [17] that observed thAt ~ Lll/z for near-critical
Potan2z/w] or to X7, a;erf(/7 z/w;) [22], then A2

is w2w2/48 or Y\, a;wi/(2m X", a;), respectively.

In Fig. 2, we present results from fitting(z) ton = 2 0.8
error functions. The dependence®t on both the linear 07
size L of the system (while.;, > A) and é clearly evi- 06 |
dences the presence of capillary waves. To our knowledge, 0'5

this is the first time that capillary waves have been ob-
served in computer simulations of polymer interfaces [19]. = 04
We fit our data to the expressiak? = as + bs In(L), 03
wherebs ~ 1/vy, (subscriptL indicates that the surface
tension has been derived from capillary-wave effects). By
measuring the surface tensign independently from the
difference in the pressures (obtained from the virial [13], 00
hence the subscripg®) perpendicular and parallel to the

Ipterface [11lyr = (P1 _.P”)Ll’ one gets anoth_er es- FIG. 3. Two different estimates of the surface tension for
timate of the surface tension, and can compare it unank, onomeric systems. Surface tensiof is obtained from

biguously withy, [23]. Figure 3 shows the two different ; (p, — Py) while y, = ksT/2mbs, Where b is obtained
measures ofy for a monomeric system. For alN, our  from a plot similar to Fig. 2.
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