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Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal
and semiflexible polymer networks
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Semiflexible polymers such as filamentous actin~F-actin! play a vital role in the mechanical behavior of
cells, yet the basic properties of cross-linked F-actin networks remain poorly understood. To address this issue,
we have performed numerical studies of the linear response of homogeneous and isotropic two-dimensional
networks subject to an applied strain at zero temperature. The elastic moduli are found to vanish for network
densities at a rigidity percolation threshold. For higher densities, two regimes are observed: one in which the
deformation is predominately affine and the filaments stretch and compress; and a second in which bending
modes dominate. We identify a dimensionless scalar quantity, being a combination of the material length
scales, that specifies to which regime a given network belongs. A scaling argument is presented that approxi-
mately agrees with this crossover variable. By a direct geometric measure, we also confirm that the degree of
affinity under strain correlates with the distinct elastic regimes. We discuss the implications of our findings and
suggest possible directions for future investigations.

DOI: 10.1103/PhysRevE.68.061907 PACS number~s!: 87.16.Ka, 62.20.Dc, 82.35.Pq
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I. INTRODUCTION

The mechanical stability, response to stress, and loco
tion of eukaryotic cells is largely due to networks of biopol
mers that collectively form what is known as the cytosk
eton @1–5#. Filamentous actin~F-actin!, microtubules, and
other intermediate filamentous proteins make up the c
skeletal network, along with a variety of auxiliary protein
that govern such factors as cross linking and filam
growth. By understanding the relation of the individual fil
ment properties and dynamically evolving gel microstruct
to the rheological/mechanical properties of intracellu
structures, one will better understand the general framew
for cellular force generation and transduction@2,6–8#. Such
stress production and sensing underlies such fundame
biological processes as cell division, motility@9#, and adhe-
sion @10–13#. Given the importance of biopolymer network
in determining the mechanical response of cells, there is
obvious interest in understanding the properties of such
works at a basic level. Understanding stress propagatio
cells also has implications for the interpretation of intrac
lular microrheology experiments@14,15#. However, biopoly-
mers also belong to the class of semiflexible polymers,
called because their characteristic bending length~however
defined! is comparable to other length scales in the proble
such as the contour length or the network mesh size, and
cannot be neglected.

Such semiflexible polymers pose interesting and fun
mental challenges in their own right as polymer materia
The understanding of the properties of individual semifle
ible polymers is quite highly developed@16–26#; in addition,
the dynamical and rheological properties of these polym
in solution@24,27–33# have largely been elucidated. The r
maining problem of determining the rheology of perm
nently cross-linked gels of semiflexible polymers, howev
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has proved quite subtle. Related theoretical approaches
sidered thus far have either assumed a simplifying netw
geometry, such as a lattice@34# or a Cayley tree@35#, or
assumed that the dominant deformation modes are a
@36# or dominated by transverse filament fluctuations a
bending@37,38#.

In this paper we study the static mechanical properties
random, semiflexible, cross-linked networks in the linear
sponse regime with the aim of shedding light on the m
complex, nonequilibrium cytoskeleton. Our approach is
liberately minimalistic: we consider two-dimensional, athe
mal systems with no polydispersity in filament propertie
Although obviously simplified, this restricts the parame
space to a manageable size and allows for a fuller chara
ization of the network response. The central finding of o
work is the existence of qualitatively distinct regimes in t
elastic response and local deformation in networks, e
with characteristic signatures that should be observable
perimentally.

The basic distinction between stress propagation in fl
ible and semiflexible networks is that in the former elas
deformation energy is stored entropically in the reduction
the number of chain conformations between cross lin
@39,40# while in the latter, the elastic energy is stored prim
rily in the mechanical bending and stretching of individu
chains. In a flexible, cross-linked mesh there is only o
microscopic length scale: the mean distance between c
links or entanglements,l c . Since the actual identity of a
flexible chain is immaterial on scales beyond this me
cross-linking distance, chain length plays only a very sm
role @41#. In a semiflexible gel, however, chains retain the
identity through a cross link because the tangent vectors
given chain remain correlated over distances much lon
thanj, the mesh size. Thus, it is reasonable to expect that
elastic properties of the network depend on both the m
size and the length of the chains.
©2003 The American Physical Society07-1
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Upon increasing the density of filaments and thus the d
sity of cross-links~hereafter we refer to filament density on
as one quantity determines the other in two dimensions! the
system acquires a static shear modulus via a continu
phase transition at the rigidity percolation point. This cor
sponds to moving from left to right in the lower half of th
phase diagram shown in Fig. 1. This critical point~solid line
in Fig. 1! is at higher density than the connectivity perco
tion point. Since our model ignores the entropic elasticity
the network, below this critical density associated with rig
ity percolation, the material has no static shear modulus
may be considered a liquid. We will discuss the finite te
perature implications of this zero-temperature phase tra
tion in more detail. The elastic properties of the fragile g
~solid! that exists just above this critical point are controll
by the physics of rigidity percolation.

By increasing the cross-link density further we encoun
a regime over which the elastic deformation of the gel
dominated by filament bending and is highly nonaffine. T
nonaffine~NA! regime is consistent with prior predictions b
Kroy and Frey@37,38#. Within the NA regime the static shea
modulus scales linearly with the bending modulus of
individual filaments,k, but the elastic moduli are not con
trolled by properties of the rigidity percolation critical poin
Most remarkably, however, the deformation field under u
formly applied stress is highly heterogeneous spatially o
long length scales comparable even to the system size
will quantify the degree of nonaffinity as a function of leng
scale and use this nonaffinity measure to demonstrate tha
degree of nonaffinity in the NA regime increases witho
bound as one goes to progressively smaller length sca
Such materials are then poorly described by standard
tinuum elasticity theory on small length scales.

By further increasing the filament density, one approac
a crossover to a regime of affine~A! deformation, in which
the strain is uniform throughout the sample, as the velo
field would be in a simple liquid under shear. This crosso
is shown in Fig. 1 by the dashed lines above the NA regi

FIG. 1. A sketch of the expected diagram showing the vari
elastic regimes in terms of molecular weightL and concentration
c;1/l c . The solid line represents the rigidity percolation transiti
where rigidity first develops at a macroscopic level. This transit
is given byL;c21. The other dashed lines indicate crossovers~not
thermodynamic transitions!, as described in the text. As sketche
here, the crossovers between nonaffine and affine regimes de
strate the independent nature of these crossovers from the rig
percolation transition.
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In this regime, elastic energy is primarily stored in th
extension/contraction of filaments. Also, in contrast to t
NA regime, the growth of the degree of nonaffinity satura
as a function of decreasing length scale. The elastic resp
of the network is governed primarily by the longitudin
compliance of filaments, and the shear modulus can be
culated from the combination of this realization and the
sumption of affine, uniform deformation as shown in Re
@24,30–33,36#. We will show that there is one dimensionle
parameterl that controls the NA→A crossover. It is set by
the ratio of the filament length to a combination of para
eters describing the density of the network and the individ
filament stiffness.

In the affine regime, the longitudinal response actua
can arise from two distinct mechanisms: there are two for
of compliance of a semiflexible filament under extensio
stress, one essentially entropic@36# and the other essentiall
mechanical@38#. In the first case, the compliance relates
the thermally fluctuating filament conformation, which, f
instance, is straightened out under tension. A change in
length of a filament between cross links results not in sim
mechanical strain along that filament but rather in a red
tion of the population of transverse thermal fluctuatio
along that filament thereby reducing the entropy of the fi
ment. This reduction results in an elastic restoring fo
along the length of the filament. This is the dominant co
pliance for long enough filament segments~e.g., between
cross links!. In the second case, the compliance is due t
change in the contour length of the filament under tensi
which, although small, may dominate for short segme
~e.g., at high concentration!. Thus, in general, we find two
distinct affine regimes, which we refer to as entropic~AE!
and mechanical~AM !.

Moving still further up and to the left in the diagram
shown in Fig. 1 we would eventually reach a regime~not
shown! in which the filament lengths between cross links a
much longer than their thermal persistence length and s
dard rubber elasticity theory would apply. This regime is
no experimental importance for the actin system. To co
plete our description of the diagram, we note that by incre
ing the filament concentration in the entropic affine regim
one must find a transition from entropic to mechanical el
ticity (AE→AM) within a regime of affine deformation.

Here we confine our attention to two-dimensional perm
nently cross-linked networks and consider only enthal
contributions to the elastic moduli of the system. In effect
are considering a zero-temperature system, except tha
account for the extensional modulus of F-actin that is pr
cipally due to the change in the thermal population of tra
verse thermal fluctuations of a filament under extension.
do not expect there to be a significant entropic contribut
to the free energy coming from longer length scale filam
contour fluctuations because of their inherent stiffness. T
justifies our neglect of the sort of entropic contributions
the filament free energy that are typically considered in
analysis of rubber elasticity of flexible polymers. We discu
this more below. The low dimensionality of the model sy
tem, on the other hand, is more significant since the es
tially straight chains in two dimensions will not interact ste
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DISTINCT REGIMES OF ELASTIC RESPONSE AND . . . PHYSICAL REVIEW E68, 061907 ~2003!
cally under small deformations. In our model, only o
length scale is required to describe the random network,
mean distance between cross links,l c . In three dimensions
however, chains can interact sterically and two quantities
needed to fully describe the random network, the density
cross links and density of filaments.

In our zero-temperature analysis of the system prese
in this paper, we do not explicitly probe the difference b
tween the NA→AE and the NA→AM crossovers. Their dif-
ference enters our description of the system via a cho
made for the form ofm, the extension modulus of an ind
vidual filament. For physiological actin, we expect that t
relevant transition will be the NA→AE. We discuss this fur-
ther in Sec. V.

The remainder of this paper is arranged as follows. In S
II we define our model system in terms of the mechani
properties of individual filaments and the manner in wh
they interconnect to form the network. An overview of th
simulation method used to find the mechanical equilibri
under an imposed strain is also given. We describe in Sec
the rigidity percolation transition, at which network rigidit
first develops. We then describe the crossover from a n
affine regime above the rigidity transition to an affine regim
in Sec. IV. A scaling argument is also presented for t
crossover. The macroscopic mechanical response is
demonstrated to be linked to geometric measures of the
gree of affine deformation at a local level. In Sec. V, w
show how the network response in the affine regime can
either essentially thermal or mechanical in nature. In Sec.
we discuss primarily the experimental implications of o
results.

II. THE MODEL

The bending of semiflexible polymers has been succ
fully described by the wormlike chain model, in which no
zero curvatures induce an energy cost according to a ben
modulusk. For small curvatures, the Hamiltonian can
written as

Hbend5
1

2
kE ds~¹2u!2, ~1!

where u(s) is the transverse displacement of the filame
ands is integrated along the total contour length of the fi
ment. Transverse filament dynamics can be inferred from
Hamiltonian@19#. For finite temperatures, Eq.~1! can also be
used to predict the longitudinal response of an isolated
ment; however, asT→0 the filament buckles, preconfigurin
a breakdown of the linear response@38#. We also consider
the response of a filament to compression/extensional de
mations through the elastic Hamiltonian given by

Hstretch5
1

2
mE dsS dl~s!

ds D 2

, ~2!

where dl/ds gives the relative change in length along t
filament. Equation~2! is just a Hookean spring respons
with a stretching modulusm that is here taken to be indepe
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dent of k, although they can both be related to the cro
sectional radius and elastic properties of individual filame
~see Sec. IV C!.

The networks are constructed by the sequential rand
deposition of monodisperse filaments of lengthL into a two-
dimensional shear cell with dimensionsW3W. Since the
position and orientation of filaments are uniformly distri
uted over the allowed ranges, the networks are isotropic
homogeneous when viewed on sufficiently large len
scales. Each intersection between filaments is identified
cross link, the mean distance between which~as measured
along a filament! is denotedl c , so that the mean number o
cross links per rod isL/ l c21. Deposition continues until the
required cross-linking densityL/ l c has been reached. An ex
ample network geometry is given in Fig. 2.

The system Hamiltonian is found by using discrete v
sions of Eqs.~1! and~2! which are linearized with respect t
filament deflection, ensuring that the macroscopic respo
is also linear. The detailed procedure is described in the
pendix. It is then minimized to find the network configur
tion in mechanical equilibrium. Since entropic effects a
ignored, we are formally in theT[0 limit. The filaments are
coupled at cross links, which may exert arbitrary constra
forces but do not apply constraint torques so that the fi
ments are free to rotate about their crossing points. We c
ment on the validity of this assumption in greater detail
Sec. VI below. Specifically, we find that whether or not t
physical cross links are freely rotating, the mechanical c
sequences of such cross links is small for dilute networ
provided that the networks are isotropic. Once the displa
ments of the filaments under the applied strain of magnit
g have been found, the energy per unit area can be ca
lated, which within our linear approximation is equal tog2/2
times the shear modulusG or the Young’s modulusY, for
shear and uniaxial strain, respectively@42#. Thus the elastic
moduli can be found for a specific network. The procedure
then repeated for different network realizations and sys
sizes until a reliable estimate of the modulus is found. S

FIG. 2. An example of a network with a cross-link densi
L/ l c'29.09 in a shear cell of dimensionsW3W and periodic
boundary conditions in both directions. This example is small,W
5

5
2 L; more typical sizes areW55L to 20L.
7-3
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Figs. 3 and 4 for examples of solved networks.
The free parameters in the model are the coefficientm

andk and the length scalesL andl c . We choose to absorbk
into a third length scalel b derived from the ratio ofm andk,

l b
25

k

m
. ~3!

Although the simulations assume a constant angular cu
ture between nodes, it is possible to assignl b the physical
interpretation of the natural length over which a free filam
bends when differing tangents are imposed at each end

FIG. 3. ~Color online! An example of a low-density network
with L/ l c'8.99 in mechanical equilibrium, with filament rigidit
l b /L50.006. Dangling ends have been removed, and the thick
of each line is proportional to the energy density, with a minimu
thickness so that all rods are visible~most lines take this minimum
value here!. The calibration bar shows what proportion of the d
formation energy in a filament segment is due to stretching or be
ing.
06190
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seen by a simple Euler minimization of the Hamiltonia
Hence we use the subscriptl b , denoting ‘‘bending length.’’
Sincem now gives the only energy scale in the problem,
scales out, along with one of the length scales~sayL), and
thus we are left with two dimensionless control paramete
the filament rigidity l b /L and the cross-link densityL/ l c .
Note that there is also a fourth length scale, namely the s
tem sizeW, but all of the results presented below are f
sufficiently large systems that theW dependence has van
ished.

We now explore the various deformation regimes of t
system beginning with the most fragile, sparse she
supporting networks that exist just above the rigidity perc
lation transition.

III. RIGIDITY PERCOLATION TRANSITION

For very low cross-link densitiesL/ l c the rods are either
isolated or grouped together into small clusters, so that th
is no connected path between distant parts of the system
the elastic moduli vanish. As the density of cross links
increased, there is aconductivity percolation transition at
L/ l c'5.42 when a connected cluster of infinite size first a
pears@43#. If there was an energy cost for rotation at cro
links, an applied shear strain would now induce a stress
sponse and the elastic moduli would become nonzero@44#.
This is also the case when thermal fluctuations gene
stresses along the filaments@45#. However, for networks with
freely rotating cross links at zero temperature, such as th
under consideration here, the network is able to defo
purely by the translation and rotation of filaments. Such
floppy mode costs zero energy and thus the elastic mo
remain zero. This continues to be the case until therigidity
percolation transition at a higher densityL/ l c'5.93@46–49#,
when there are sufficient extra constraints that filaments m
bend or stretch and the moduli become nonzero.

A full description of the network behavior just above th
transition has been given elsewhere@50#, so here we summa
rize the results. Just above the rigidity transition, bothG and
Y increase continuously from zero as a power inL/ l c , with
different prefactors but the same exponentf,

G, Y;S L

l c
2

L

l c
U transD f

. ~4!

ss

d-
s

FIG. 4. ~Color online! The

same as Fig. 3 for higher densitie
L/ l c'29.09 ~a! and L/ l c'46.77
~b!. For calibration of the colors
see Fig. 3.
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We have found thatf 53.060.2 @50,51#, consistent with the
value 3.1560.2 found independently@44#. It is also possible
to measure geometric properties of rigid clusters, such
their fractal dimension; this has been done using the pe
game method, and found to give exponents that are simila
that of central force~i.e., Hookean spring! percolation on a
lattice @46#. However, such networks cannot support ben
ing, whereas we have found that the system Hamiltonian
our model is dominated by its bending term near to the tr
sition. We conclude that our system is in a different univ
sality class to central force percolation, at least as far as
ideas of universality apply to rigidity percolation; indeed,
casts doubt on the validity of universality for force perco
tion as a whole, as discussed below. Note that this disc
ancy cannot be due to any form of long range correlation
the morphology of the system, since our random netwo
are constructed in such a way as to ensure that geom
correlations cannot extend beyond the length of a single
ment. Note also that although cross links in our random n
works are connected by filament sections of varying leng
thus producing a broad distribution of spring constants wh
can also destroy universality according to the integral
pression in Ref.@52#, our networks donot violate this con-
dition. This is simply because there is a maximum lengthL,
and hence a minimum spring constantm/L, between any two
cross links, ensuring a low-end cutoff to the distribution
spring constants. Similar considerations hold for the bend
interaction.

Of the exponents that are used to characterize the cri
regime, those measured by the pebble game method re
topological or geometric properties of the growing rigid clu
ter. The exponentf is of a different class since it measures t
mechanical properties of the fragile solid that appears at
critical point. Our observation of distinctf ’s for two systems
~i.e., our simulations and central force lattices! that appear to
share the same geometric and topological exponents sug
that, although there are large universality classes for the
pological exponents describing the interactions that prod
the appropriate number of constraints, the scaling of
shear modulus admits a larger range of relevant pertu
tions. We suspect that while rigidity itself is a highly nonl
cal property of the network, the modulus depends critica
on how stress propagates through particular fragile, lo
density regions of the rigid cluster. Thus the modulus
pends on details of how stress propagates locally thro
perhaps a few cross links so that the mechanical charact
tics of the filaments and the cross links become relevant

The possibility of experimentally observing the physi
associated with the zero-temperature, rigidity percolat
critical point @50# sensitively depends on the size of the cri
cal region. As with other strictly zero-temperature pha
transitions, there can be experimental consequences o
critical point physics only if the system can be tuned to p
through the critical region, since the critical point itself ca
not be explored. At finite temperature, the network below
rigidity percolation point~but above the connectivity, or sca
lar percolation point! has a residual static shear modulus ge
erated by entropic tension in the system. One might imag
that one may crudely estimate size of the critical regi
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around the rigidity percolation transition by comparing t
decaying zero-temperature~i.e., mechanical! modulus of the
network above the phase transitionG;(L/ l c2L/ l cu trans)

f to
the entropic modulus below it,Gen;kBT/ l c

3 . Unfortunately
to make such an estimate one implicitly makes assumpt
about the, as yet unknown, crossover exponents. Regard
we speculate that the critical percolation point may inde
have physical implications at room temperature. First, due
the significant stiffness of the filaments, this residual entro
cally generated modulus should be small and thus the p
ics of the zero-temperature critical point may have expe
mental relevance. Second, one may interpret the obse
difference between the numerically extracted and calcula
scaling exponentsz, which describes the dependence ofl on
l c / l b as evidence of corrections to mean-field scaling due
the proximity of the rigidity percolation critical point. This
interpretation is strengthened by the fact that additional d
points at smaller values ofl c ~i.e., higher cross-link density
and thus farther from the rigidity percolation point! but fixed
l conform more closely to our mean-field scaling expone
Thus, it is reasonable to expect that one may observe p
nomena associated with rigidity percolation in spars
cross-linked actin systems.

IV. ELASTIC REGIMES

The coarse-grained deformation of a material is norma
described by the strain field that is defined at all spa
points. Both the internal state of stress and the density
stored elastic energy~related by a functional derivative! are
then functions of the symmetrized deformation tensor. In
model, the underlying microscopic description consists
tirely of the combination of translation, rotation, stretchin
and bending modes of the filaments. Of these, only the la
two store elastic energy and thereby generate forces in
material. Thus a complete description of the energetics o
filament encompassing these two modes must lead to a m
roscopic, or continuum elastic description of the material

The state of deformation itself, however, is purely a ge
metric quantity; it can be discussed independently of the
ergetics associated with the deformation of the filame
themselves. We will characterize the deformation field asaf-
fine if deformation tensor is spatially uniform under un
formly applied strain at the edges of the sample. Of cou
this strict affine limit is never perfectly realized within ou
simulations, but, as shown below, there is a broad region
parameter space in which the deformation field is appro
mately affine, in the sense that quantitative measures of
network response asymptotically approaches their affine
dictions. This entire region shall be called ‘‘affine.’’ Since
continuum elastic models the stored elastic energy depe
only on the squares~and possibly higher even powers! of the
spatial gradients of the symmetrized deformation tensor,
clear that uniform strain is a global energy minimum of t
system consistent with the uniformly imposed strain at
boundary.

The spatial homogeneity of the strain field allows one
draw a particularly simple connection between the ela
properties of the individual elements of the network and
7-5
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HEAD, LEVINE, AND MacKINTOSH PHYSICAL REVIEW E68, 061907 ~2003!
collective properties. Because under affine deformation
ery filament experiences exactly the same deformation,
collective elastic properties of the network can be calcula
by determining energy stored in a single filament under
affine deformation and the averaging over all orientations
filaments. Note this calculation constitutes a mean-field
scription of elasticity.

If the strain field is purely affine~i.e., is uniformly distrib-
uted throughout the sample! on length scales larger than th
microscopic length scales~e.g., the distance between cro
links!, then it can be Taylor expanded to give a locally u
form strain in which all elements of the strain tensor a
constants. It is then straightforward to see that the filame
would purely stretch~or compress! and the moduli would be
independent of filament bending coefficientk. Indeed, it is
possible to derive exact expressions forG andY in this case,
as described below.

Conversely, nonaffine deformation on microscop
lengths arises as a result of filament bending, and hen
dependency onk and well asm. This is what we find above
the rigidity percolation transition, on increasing netwo
concentration or molecular weight. Surprisingly, howev
this is not restricted to the neighborhood of the transition,
constitutes a broad regime of the available parameter sp
This nonaffine regime is dominated by bending, as can
seen by the fact thatG andY are independent ofm below. It
is important to note that continuum elasticity breaks down
length scales over which the deformation field is nonaffi
In addition, the appearance of nonaffine deformations inv
dates the simple, mean-field calculation of the moduli wh
assumes that every filament undergoes the deformation.
nerically, the moduli in the nonaffine deformation regim
will be smaller than their value calculated under the assu
tion of affine deformation. Nonaffine deformation fields
effect introduce more degrees of freedom since the defor
tion field is nonuniform. Using those extra degrees of fre
dom, the system is able to further lower its elastic energy
nonaffine deformations and thereby reduce its modulus. O
upon increasing the number of mutual constraints in the s
tem can one constrain the system to affine deformations
thereby maximize its modulus.

A. Nonaffine, bending dominated

Starting from the most sparse networks just above
rigidity percolation transition, we first encounter the no
affine regime on increasingL/ l c . We find empirically that
throughout this regime~until the crossover to affine deforma
tion of one kind or the other—AM or AE! the moduli of the
network are controlled by the bending modes of the fi
ments. This nonaffine response can be distinguished from
scaling regime around the transition, which is also nonaffi
by the lack of the diverging length scale associated wit
continuous phase transition; in the simulations, this co
sponds to the independence ofG andY on system sizeW for
relatively smallW, as opposed to the increasingly largeW
required for convergence close to the transition.

The dependence ofG on the system parameters in th
regime can be semiquantitatively understood as follo
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Consider what happens whenk→0. In this limit, filaments
can freely bend and only stretching modes contribute to
dynamic response. ThisHookeancase has already been in
vestigated by Kelloma¨ki et al. for the same random networ
geometries as considered here@53#. They found the striking
result that flexible modes exist for all densities in the line
response, i.e.,G[Y[0. In these flexible modes, the fila
ments will bend at cross links, but without costing ener
sincek[0. If k is now continuously increased from zer
then there should be a range of sufficiently smallk in which
the angles remain unchanged but now incur an energy
according to Eq.~1!, giving a total energy and henceG that
is proportional tok.

To make this idea more specific, suppose that whenk
[0 the angles of filament deflection at cross links,$du%, are
distributed with zero mean and variancesdu

2 . By assump-
tion, sdu

2 can only depend on the two geometric length sca
L andl c , or to be more precise on their ratioL/ l c . From Eq.
~1!, the energy at each cross link is

dHbend;kS sdu

l c
D 2

l c . ~5!

The mean number of cross links per unit area isNL/2l c ,
whereN is the number of filaments per unit area.N can be
exactly related toL/ l c using the expression derived in Re
@50#; however, for current purposes it is sufficient to use t
approximate relationL/ l c'(a21)/(122/a), where a
52L2N/p. Thus Eq.~5! summed over the whole networ
gives

Gbend;k
sdu

2

l c
3

. ~6!

Therefore plottingGL/m5sdu
2 Ll b

2/ l c
3 versusl b /L on log-log

axes will give a straight line of slope 2, as confirmed by t
simulations below. It is also possible to infer the variation
sdu on L/ l c from either the simulations or the scaling arg
ment presented below, but since this is not an easily mea
able quantity experimentally, nothing more will be said abo
it here. A bending-dominated response was assumed in
calculations of Freyet al. @38# and Joly-Duhamelet al. @54#,
although the two-dimensional~2D! and 3D density depen
dencies will of course be different.

B. Affine, stretching dominated

Under an affine strain, the network response cons
purely of stretching modes and it is straightforward to calc
late the corresponding modulusGaffine. Consider a rod of
lengthL lying at an angleu to thex axis. Under a sheargxy ,
this will undergo a relative change in lengthdL/L
5gxysinu cosu, and therefore an energy cost

dHstretch5
1

2
mLgxy

2 sin2u cos2u. ~7!
7-6
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The sin2ucos2u factor reduces to 1/8 after uniformly avera
ing over alluP(0,p). Summing over the network as in th
nonaffine case gives

Gaffine5
2N^dHstretch&u

gxy
2

'
p

16

m

L S L

l c
12

l c

L
23D , ~8!

where we have also corrected for dangling ends by renorm
izing the rod lengthsL→L22l c . In the high—density limit
L/ l c→`, Eq. ~8! asymptotically approaches

Gaffine;
p

16

m

l c
. ~9!

Since the number of rods per unit area isN;1/(Ll c), the
concentration of protein monomers of characteristic sizea is
c;NL/a;(alc)

21 and thusG;(ac)a with a51. For com-
parison, theories of thermal 3D systems predicta5 7

5 for
calculations based on a tube picture@31,30,32#, a5 11

5 for
affine scaling relations@36#, and a52 for the T50 three-
dimensional cellular foam@34#.

The above calculation can be repeated for an af
uniaxial strain gyy to give similar expressions for th
Young’s modulusY, with the sin2ucos2u term in Eq.~7! re-
placed with sin4u. Since this averages to 3/8,Yaffine differs by
a factor of 3,

Yaffine53Gaffine. ~10!

Hence the Poisson ration5Y/2G21 for affinely sheared
networks isnaffine5

1
2 , which should be compared to the 3

lattice predictionn5 1
3 @34# and the 3D Cayley tree valuen

5 1
4 @35#.

C. Scaling argument and crossover between elastic regimes

We now attempt to identify the dominant mode governi
the deviation from the affine solution. The relevant leng
scales for this mode are derived, which, by comparing
other lengths in the problem, allow us to estimate when
crossover between stretching-dominated and bend
dominated regimes should occur. This prediction correc
predicts the qualitative trends of the deviation from affin
with the lengthsL, l c , andl b . However, it is not as success
ful quantitatively as an empirical scaling law described
Sec. IV D. Nonetheless we believe it contains the essen
physics and therefore warrants a full description.

To proceed, we note that the stretching-only solution p
sented above assumes that the stress is uniform along a
ment until reaching the dangling end. It is more realistic
suppose that it vanishes smoothly. If the rod is very long,
from the ends and near the center of the rod it is stretch
compressed according to the macroscopic straing0. We as-
sume that this decreases toward zero near the end, ov
lengthl i , so that the reduction in stretch/compression ene
is of ordermg0

2l i . The amplitude of the displacement alon
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this segment which is located near the ends of the rod i
orderd;g0l i . This deformation, however, clearly comes
the price of deformations of surrounding filaments, which
assume to be primarily bending in nature~the dominant con-
straints on this rod will be due to filaments crossing at a la
angle!. The typical amplitude of the induced curvature is
orderd/ l'

2 , wherel' characterizes the range over which t
curved region of the crossing filaments extends. This rep
sents what can be thought of as a bending correlation len
and it will be, in general, different froml i . The latter can
also be thought of as a correlation length, specifically for
strain variations near free ends. We determine these len
self-consistently, as follows.

The corresponding total elastic energy contribution due
these coupled deformations is of order

DE152mg0
2l i1kS g0l i

l'
2 D 2

l'
l i

l c
, ~11!

where the final ratio ofl i to l c gives the typical number o
constraining rods crossing this region of the filament in qu
tion. In simple physical terms, the rod can reduce its to
elastic energy by having the strain near the free ends dev
from the otherwise affine, imposed strain field. In doing so
results in a bending of other filaments to which it is couple
From this, we expect that the range of the typical longitu
nal displacementl i and transverse displacementl' are re-
lated by

l'
3 ; l b

2l i
2/ l c . ~12!

Of course, the bending of the other filaments will on
occur because of constraints on them. Otherwise, they wo
simply translate in space. We assume the transverse
straints on these bent filaments to be primarily due
compression/stretch of the rods which are linked to the
These distortions will be governed by the same physics
described above. In particular, the length scale of the co
sponding deformations is of orderl i , and they have a typica
amplitude ofd. Thus, the combined curvature and stret
energy is of order

DE25mg0
2l i

l'
l c

1kS g0l i

l'
2 D 2

l' , ~13!

where, in a similar way to the case above,l' / l c determines
the typical number of filaments constraining the bent one
focus on here. This determines another relationship betw
the optimal bending and stretch correlation lengths, wh
can be written as

l'
4 ; l b

2l il c . ~14!

Thus, the longitudinal strains of the filaments decay to z
over a length of order

l i; l cS l c

l b
D 2/5

, ~15!
7-7
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while the resulting bending of filaments extends over a d
tance of order

l'; l cS l b

l c
D 2/5

. ~16!

The physical implication of Eqs.~15! and ~16! is that a
length of each filament of orderl i experiences nonaffine de
formation and this nonaffine deformation causes change
the local strain field over a zone extending a perpendic
distancel' from the ends of that filament. Thus whenl i
becomes comparable to the length of the filament,L, the
network should deform in a nonaffine manner. We will re
to this length along the filament contour over which o
expects to find nonaffine deformation asl.

These results make sense, as increased bending rig
can be expected to increase the bending correlation le
l' , while decreasing the longitudinal correlation lengthl i
because of the stiff constraints provided by the cross lin
Both lengths, of course, tend to increase with decreas
concentration of cross links, i.e., with increasingl c . This
scaling analysis assumes, however, thatl c, l i ,' . Further-
more, we expect thatl b, l c in general. This is because th
bending stiffness of a rodk;Yfr

4 increases with the fourth
power of its radiusr, while m;Yfr

2 increases with the
square of the radius, whereYf is the Young’s modulus of the
filament. Thus,l b is expected to be of the order of the ro
diameter, which must be smaller than the distance betw
cross links, especially considering the the small volume fr
tionsf of less than 1% in many cases. For rods of radiusr in
three dimensions, we expect thatl c;a/Af. Thus,l b / l c may
be in the range of 0.01–0.1. This means that we expect
l i. l' , although both of these lengths are of orderl c . Thus,
the natural dimensionless variable determining the degre
affinity of the strain is the ratio of the filament length tol i ,
the larger of the two lengths that characterize the range
nonaffine deformation; i.e. when the filaments are very lo
compared with the effectively stress-free ends, then mos
the rod segments experience a stretch/compression defo
tion determined by their orientation and the macrosco
strain.

It is possible, however, thatl' above may become smalle
than l c , especially for either very flexible rods or for low
concentrations. This is unphysical, and we expect the be
ing of constraining filaments above to extend only ove
length of orderl c when l b / l c becomes very small. This re
sults in a different scaling ofl i , given by

l i; l c
2/ l b . ~17!

Although we see no evidence for this scaling, it may beco
valid for small enoughl b / l c .

D. Numerical results for elastic moduli

We now summarize our numerical results starting firs
lowest filament densities. Away from the rigidity transitio
the shear modulusG continues to increase monotonical
with the cross-link densityL/ l c at a rate that only weakly
depends on the filament rigidityl b /L, as shown in Fig. 5.
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Indeed, for high densitiesG approaches the affine predictio
Gaffine which, due to the absence of bending modes un
affine strain as discussed at the beginning of Sec. IV, is
dependent ofl b . The filament rigidityl b does, however, in-
fluence the crossover to the affine solution as will be d
cussed below. The Young’s modulusY and the Poisson ratio
n5Y/2G21 for a range of densities are shown in Fig. 6.
is apparent thatn remains close to the affine predictio
naffine5

1
2 , except possibly near the transition where it tak

the value 0.3560.1 @50# ~here as elsewhere, quoted erro
are single standard deviations!. Note that, in two dimensions
area-preserving deformations haven51, son50.5 does not
imply incompressibility. For comparison, the thermodynam
cally stable range is21<n<1 @42#. The robustness of the
affine prediction of the Poisson ratio even deep in the
regime is somewhat surprising and is not accounted fo
our arguments.

FIG. 5. The normalized shear modulusGL/m vs the cross-link
densityL/ l c for three different bending lengthsl b /L. The solid line
gives the affine solution~8! and the dashed lines adjoining the da
points are to guide the eye. Here and throughout, errors are
larger than the symbols.

FIG. 6. The shear and Young’s moduliG and Y for l b /L
50.006 againstL/ l c . The interconnecting lines are to guide th
eye. ~Inset! The Poisson ration5Y/2G21 againstL/ l c for the
samel b /L.
7-8
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Varying the ratiol b /L over many orders of magnitude a
fixed L/ l c reveals a new regime in whichG}k, rather than
G;Gaffine}m as in the affine regime described above. A
example is given in Fig. 7, where it can be seen thatG} l b

2

}k, suggesting that this regime is dominated bybending
modes, a claim that is supported by the theoretical consi
ations presented in Sec. IV A and the work of Freyet al. @38#
and Joly-Duhamelet al. @54#. We also confirm in the inset to
this figure that the regime for whichG'Gaffine is dominated
by stretching modes, and that this new regime withG}k is
dominated by bending modes, as expected.

The crossover between the two regimes can be quant
by the introduction of a new lengthl, being a combination
of l b and l c characterized by an exponentz,

l5 l cS l c

l b
D z

. ~18!

The ratioL/l can then be used to ascertain which regime
network is in, in the sense thatl!L corresponds to the
affine regime, andl@L corresponds to the nonaffine regim
Note that this is only possible outside the neighborhood
the rigidity transition. For densities in the approximate ran
13,L/ l c,47, a very good data collapse can be found
usingl15A@3l c

4/ l b or z5 1
3 , as demonstrated in Fig. 8. Th

empirical relation has already been published@51#. However,
as clearly evident from the figure, it appears to fail for t
small number of very high-density points that we have n
been able to attain. Conversely, the scaling argument of
IV C generates the relevant length scalel25 l i5A@5l c

7/ l b
2 or

z5 2
5 . Although the data do not collapse for this second for

as evident from Fig. 9, it appears to improve the ove
collapse for larger densities~i.e., further from the rigidity
transition point!. A possible explanation for this is thatl2 is

FIG. 7. Shear modulusG vs filament rigidity l b /L for L/ l c

'29.09, whereG has been scaled to the affine prediction for th
density. The straight line corresponds to the bending-dominated
gime with G}k, which gives a line of slope 2 when plotted o
these axes.(Inset)The proportion of stretching energy to the tot
energy for the same networks, plotted against the same horizo
axis l b /L.
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the correct asymptotic length, but does not apply for n
works of intermediate density, where the empirical forml1
is much more successful, perhaps due to corrections to s
ing from the transition point as discussed in Sec. III.~This is
also the relevant range for biological applications!. However,
our current computational resources cannot go to higher d
sities, and so we must leave this question to be resolved
later date, by either improved theory or increased proces
speeds.

Although the goal of this paper is to characterize the
havior of semiflexible polymer networks over the whole
the parameter space, it is nonetheless instructive to also
sider parameters corresponding to physiological actin n
works. The lengthsL, l c , and l b for F-actin in physiological
conditions can be approximated as follows. The distance
tween cross links has been quoted asl c'0.1 mm @38#, which

e-

tal

FIG. 8. G/Gaffine vs L/l with l5A@3l c
4/ l b for different densities

L/ l c , showing good collapse except for the highest density con
ered. The enlarged points forL/ l c'29.09 correspond to the sam
parameters as in Fig. 12.

FIG. 9. The same data as Fig. 8 plotted againstL/l2 with l2

5A@5l c
7/ l b

2 , as predicted by the scaling argument in the text, sho
ing slight but consistent deviations from collapse for this range
L/ l c .
7-9
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HEAD, LEVINE, AND MacKINTOSH PHYSICAL REVIEW E68, 061907 ~2003!
for filament lengthsL'2mm gives a cross-link density
L/ l c'20. As already argued in Sec. IV C, we can estimatel b
by regarding the filament as a solid elastic cylinder w
radius r, in which casel b;r'10 nm. Thus we find tha
l b /L;r /L;1023, which givesL/l'5. Looking at Fig. 8,
this suggests that cytoskeletal networks are in the cross
region. Similarly,L/l2'4 leading to the same basic concl
sion.

E. Spatial correlations

A further way of probing the degree of affinity of a ne
work is to consider a suitable spatial correlation functio
Whatever quantity is chosen, it is clear that there can be
fluctuations if the strain is purely affine. This is not the ca
with nonaffine strains, which will induce localized bendin
modes that couple to the local geometry of the network
thus may fluctuate from one part of the network to the ne
Thus correlations between fluctuations should have a lon
range when the deformation is more nonaffine, qualitativ
speaking. The two-point correlation function between s
tially varying quantitiesA(x) andB(x) can be generally de
fined as

CAB~r !5^A~x!B~x1r n̂!&2^A~x!&^B~x!&, ~19!

where the angled brackets denote averaging over all netw
nodesx and direction unit vectorsn̂. Figure 10 shows an
example ofC«r , wherer is the local mass density of fila
ments and« is the energy per unit filament length, restrict
to either stretching or bending energy as shown in the k
There is a clear anticorrelation between density and b
forms of energy at short separations, showing that the m
nitude of deformation is heterogeneously distribut
throughout the network, being greater in regions of low m
density and smaller in regions of high mass density. Qua
tively, the network concentrates the largest deformations

FIG. 10. The correlation functionC«r(r ) between local mass
density r and energy density«, where « is restricted to either
stretching or bending energy as shown andr is the length of fila-
ments within a radiusL/4 of the network point. The cross-link
density L/ l c'21.48, l b /L50.006, and both lines have been no
malized so thatuC«r(r 50)u51.
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low mass density regions, thus reducing the macroscopic
ergy cost. This affects both bending and stretching mo
equally: there is no increased likelihood of one mode o
the other for regions of given density, as demonstrated by
collapse ofC«r for both energy types after normalization
also given in this figure.

The sizes of locally correlated regions can be inferr
from the decay of a suitable autocorrelation function, such
the combined energyE ~stretching plus bending! per unit
length.CEE(r ) is plotted in Fig. 11 for different density net
works. The trend is forCEE(r ) to decay more slowly withr
for lower L/ l c at fixed l b /L, suggesting larger ‘‘pockets’’ of
nonuniform deformation for lower network densities, pr
sumably becoming infinitely large at the transition, where
correlation length diverges algebraically with the known e
ponentn'1.1760.02@46#. We have been unable to extract
meaningful length scale from ourCEE(r ) data and hence ar
unable to confirm the value of this exponent.

F. Measures of affinity

Intuitively, the degree to which the network deformatio
is or is not affine depends on the length scale on which
look. For length scales comparable to the system size,
deformation must appear affine since we are imposing
affine strain at the periodic boundaries. Only on so
smaller length scale might deviations from affinity be o
served. If the deformation field is nonaffine on length sca
corresponding to the microscopic lengthsL, l c , or l b , then
the filaments will ‘‘feel’’ a locally nonuniform strain field
and the assumptions leading to the prediction ofGaffine will
break down.

To quantify the degree of affinity at a given length sca
consider the infinitesimal change in angle under an impo
shear strain between two network nodes separated by a
tance r. Denote this angleu, and its corresponding affine
predictionuaffine. Then a suitable measure of deviation fro
affinity on length scalesr is

FIG. 11. Autocorrelation of the combined~stretching plus bend-
ing! energy densityE for l b /L50.006 and theL/ l c given in the key.
The system sizes wereW515L (L/ l c513.92), 10L ~18.95 and

21.48!, 61
4 L ~31.63!, and 21

2 L ~77.42!.
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DISTINCT REGIMES OF ELASTIC RESPONSE AND . . . PHYSICAL REVIEW E68, 061907 ~2003!
^Du2~r !&5^~u2uaffine!
2&, ~20!

where the angled brackets denote averaging over both
work points and different network realizations. An examp
of ^Du2(r )& is given in Fig. 12, and clearly shows that
monotonically decays with distance, as intuitively expect
Also, the deviation from affinity is uniformly higher fo
lower l b /L at the sameL/ l c , in accord with the greater de
viation of G from Gaffine observed above.

Although ^Du2(r )& decreases monotonically withr, the
decay is slow, almost power-law-like over the ranges giv
This suggests that there is no single ‘‘affinity length sca
above which the deformation looks affine, and below wh
it does not. However, we can read off the degree of affinity
the cross-link length scaler 5 l c , which ~after normalizing to
the straing) should be!1 for an affine deformation, and
@1 for a nonaffine one. This is evident when comparing F
12 to theG/Gaffine for the same systems in Fig. 8; (1/g2)
3^Du2( l c)&!1 does indeed correspond toG'Gaffine, and
G'Gbend for (1/g2)^Du2( l c)&@1.

The monotonically increasing deviation from affinity wit
decreasingL/l can also be seen using an independent af
ity measure, as used by Langer and Liu@55#. Consider the
displacements$dxi% of each nodei after the strain has bee
applied, relative to their unstrained positions. Each of th
has a corresponding affine predictiondxi

affine that can be sim-
ply computed given the node’s original position and the ty
of strain applied. Then a scalar measure of the global de
tion from affinity is the root mean square of the differen
between the measured displacements and their affine va
i.e.,

m25^~dxi2dxi
affine!2&, ~21!

FIG. 12. Plot of the affinity measurêDu2(r )& normalized to the
magnitude of the imposed straing against distancer /L, for differ-
ent l b /L. The value ofr corresponding to the mean distance b
tween cross linksl c is also indicated, as is the solid line (1
g2)^Du2(r )&51, which separates affine from nonaffine networ
to with an order of magnitude~the actual crossover regime is som
what broad!. In all cases,L/ l c'29.1 and the system size wasW
5

15
2 L.
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where the angled brackets denote averaging over all nodi.
In Fig. 13 we plotm/L againstL/l, and observe the ex
pected monotonic increase of the deviation from affinity w
decreasingL/l. However, the data for differentL/ l c do not
collapse. The problem is that, unlike in Figs. 8 and 9, it is n
obvious howm should be normalized to give a dimensionle
quantity; we have tried using the length scalesL, l b , l c , and
l, but none of these generate good collapse. It is likely t
some combination of these lengthswill collapse the data, bu
we have been unable to find it empirically, and we have
theoretical prediction for this affinity measure.

V. THERMAL EFFECTS

In the above, we have considered a mechanical, pu
athermal model of networks governed by two microsco
energies:~i! the bending of semiflexible filaments, and~ii !
the longitudinal compliance of these filaments that descri
their response to compression and stretching forces. We h
already discussed the role of temperature in terms of
formation of a solid via the rigidity percolation transition
Now, we examine the transition between the AM and A
regimes.

For a homogeneous filament of Young’s modulusYf , the
corresponding single-filament parametersk ~the bending ri-
gidity! and m ~the one-dimensional compression/stret
modulus! are determined byYf and geometric factors:k
;Yfa

4 and m;Yfa
2, where 2a is the filament diameter

From here on, we refer to the later~mechanical! modulus as
mM .

At finite temperature, however, there will be transver
fluctuations of the filaments that give rise to an addition
longitudinal compliance. Physically, this compliance com
from the ability to pull out the thermal fluctuations of th
filament, even without any stretching of the filament bac
bone. The corresponding linear modulus for a filament s
ment of lengthl is @36#

-

FIG. 13. The root mean square deviation of node displacem
from their affine prediction,m/L, plotted against the sameL/l1 as
in Fig. 8. Symbol sizes are larger than errors, so the apparent sc
is real.
7-11
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mT5
k,p

l 3
;

a2,p

l 3
mM , ~22!

where,p5k/(kT) is the persistence length. The full com
pliance of such a segment is thenl /m5 l /mM1 l /mT , corre-
sponding to an effective linear modulus of

m5
mMmT

mM1mT
. ~23!

Thus, the thermal compliance dominates for lengths lar
than A@3a2,p , while the segment behaves for all practic
purposes as a rigid rod with linear modulusmM for lengths
smaller thanA@3a2,p .

Thus, there appear to be two distinct regimes within
affine regime: for higher concentrations, specifically forl c

&A@3a2,p , the longitudinal compliance of the filaments
governed by the mechanical compression/stretching of
ment segments and the modulus is given by Eq.~8!; this is
the AM regime. At lower concentrations, specifically forl c

*A@3a2,p , the single-filament compliance is dominated
thermal fluctuations and

G;
pk,p

16l c
4

. ~24!

This is the AE regime. For the networks under discussi
which are described by a single variablel c that both repre-
sents the spacing of filaments and distance between
straints or cross links, the boundary between these two a
regimes is simply determined by concentration, which
naturally measured as 1/l c . For actin, we estimate the cha
acteristic lengthA@3a2,p to be of order 100 nm. Thus, onl
when the distance between cross links is less than a dist
of order 100 nm will the bulk response of the network d
pend on the purely mechanical extension of actin filamen

Experimentally, these two affine regimes should be dis
guished by their scaling dependencies of the linear sh
moduli G on various parameters. A clearer, qualitative d
tinction, however, should be seen in their nonlinear behav
Specifically, in the thermal regime, the maximum strain~ei-
ther at which the network yields or first exhibits nonline
behavior! is expected to decrease with increasing concen
tion of polymer or cross links@36#. This is because of the
limited extent of thermal compliance, which decreases
shorter filament segments that appear more straight. Th
in contrast with mechanical networks where the nonline
ties are governed by geometry~e.g., connectivity and orien
tation of filaments!. This would suggest a concentratio
independent maximum or characteristic strain, as is see
some colloidal gels@56#.

Moreover, the actual form of the force-extension relati
for a semiflexible polymer in the limit of segment lengthsl
!,p takes on a universal form, depending only on a char
teristic extensionl 2/,p and characteristic forcep2k/ l 2. This
force-extension relation predicts a universal strain stiffen
of semiflexible gels in the affine regime, in contrast with
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nonlinear modulus in the mechanical affine regime that w
be much more dependent in the type of filament@57#.

VI. IMPLICATIONS AND DISCUSSION

Starting with solutions having no~zero-frequency! elastic
behavior, as the filament concentrationcf , molecular weight
~filament length! L, or density of cross links is increase
there is a point where macroscopic elastic behavior is fi
observed. This is the rigidity percolation transition, and
occurs for a fixed value ofL/ l c , where 1/l c is a particularly
convenient measure of filament concentration, as it rep
sents the line density~length per volume! in our 2D system,
apart from a factor of order unity.

We have shown that there are three distinct elastic beh
iors of semiflexible networks above the rigidity transition:~i!
when either the molecular weight~filament length! or con-
centration is low, a nonaffine regime is expected in which
modulus is determined at a microscopic level by filame
bending ~transverse compliance! @34,38#; ~ii ! as either the
molecular weight or concentration increases, a crossove
expected to an elastic regime in which the deformations
affine ~uniform strain! and in which the elastic response
the large scale is governed by the thermal/entropic long
dinal compliance of filament segments;~iii ! at still higher
concentrations or cross-link densities, this single-filam
compliance becomes dominated by the mechanical com
ance of bare filament stretching and compression.

The crossover between~i! and ~ii ! is given by a fixed
value of L/l of order 10, wherel is a microscopic length
characterizing the range of nonaffine deformation along
filament backbone. We expect this length to be of orderl c ,
the distance between cross links. But, it should also dep
on the filament stiffness through the lengthl b5Ak/m. In
fact, it can only depend on the two lengthsl b and l c in our
networks. Thus, we expect thatl5 l c( l c / l b)

z. We have pre-
sented a scaling argument that shows this forz52/5, while
we find empirically thatz.1/3 for biologically relevant den-
sities. The boundary between nonaffine and affine regime
thus given byL;l. In the mechanically dominated regim
l b5Ak/mM, while in the thermal regime,

l b5Ak/mT;A l c
3k

a2,pmM

. ~25!

Thus, in the mechanical regime, the boundary is given
L; l c

11z , while in the thermal regime, the boundary is give
by L; l c

12z/2 . In either case, we see that this crossover ha
different functional dependence on concentration, dem
strating once again that the physics of this crossover is
tinct from the rigidity percolation transition. We show
sketch of the expected diagram of the various regimes
pending onL and cf in Fig. 1. The boundary between me
chanically dominated and thermal regimes is simply giv
by l c;A@3a2,p , as we have noted above.

We can make several additional observations concern
the behavior of real networks, based on our simple mo
First, we note the strong dependence of the shear modulu
7-12
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the cross-link density, as illustrated in Eq.~24! and already
noted for 3D affine networks in Ref.@36#. In fact, in the 2D
networks presented here, we have made no distinction
tween the mesh size~or typical separation of neighborin
filaments! j and the cross-link separationl c . We observe
from this strong dependence of the modulus onl c , which is
independent of filament concentration in 3D, that the mo
lus of semiflexible gels can be varied significantly~in fact,
by orders of magnitude! with changes only in cross-link den
sity at the same filament concentration. This is very differ
from the situation for flexible polymer gels, and may well
important for cells, in that the mechanical properties can
tuned by local variations in the densities or binding consta
of various actin binding proteins.

Furthermore, as we have shown@44,51#, the modulus be-
comes a very strong function of concentration~which, again,
will translate to cross-link density on 3D networks! in the
nonaffine regime. In the nonaffine regime, the modulus
vary by several orders of magnitude with respect to
stiffer affine gels. As this nonaffine regime is expected
just a few ~specifically, of order 10 or fewer! cross links
along a single filament, it may also be possible that the
can reduce its stiffness significantly, and even fluidize,
decreasing the number of cross links per filament or the
ment length. In addition, by using its proximity to the N
→AE crossover, the cell can tune its nonlinear mechan
properties. In the AE regime the cytoskeletal network sho
be strongly strain stiffening due to the nonlinear extensio
properties of individual filaments@36#. In the NA regime,
there should be a much larger linear regime since the be
ing modes of the filaments, which dominate the deformati
in the NA regime, have a much larger linear response regi
Finally, we speculate that in the affine regime, the mecha
cal properties of the cell should be insensitive to the det
of the cytoskeletal microstructure; in the AE regime t
mean-field character of the network enforced by the la
ratio of L to l suggests that local effects of cross-linker ty
or network topology self-average. On the other hand, wit
the NA regime, the cellular mechanical properties may
quite sensitive to such local network modifications.

In this model, we have assumed freely rotating cro
links. In the case of actin networks, however, it is w
known that many associated proteins can bind actin filam
at either preferred or fixed angles@1#. This can have two
distinct effects: one geometric, and the other mechani
One the one hand, the model we have described is only
isotropic networks. Thus, if actin cross linking results in
anisotropic network~e.g., with oriented bundles!, then one
cannot describe such a system with the model prese
here.

If, on the other hand, the networks remain isotropic, b
with rigid bond angles between filaments, then we expec
see additional rigidity of the networks as a result. The size
this effect can be estimated for the affine regime~AE and
AM, in fact!. We find that the relative contribution to th
network elastic modulus due to such cross links is only
order l b / l c , which is expected to be small for realistic ne
works of actin, bothin vitro andin vivo. In simple terms, this
is simply due to the very large lever arm that a filame
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segment of lengthl c ~say, of order 1mm) between cross
links has over a small actin binding protein of size a fe
nanometers. More precisely, this can be seen by noting
in shearing two filaments that cross at a finite angle in
shear plane, a fixed bond angle between the filaments
give rise to a distortion~i.e., nonaffine! of the resulting fila-
ment conformations within a regionl b near the cross link.
~This length corresponds to the range over which finite be
ing occurs, e.g., when a finite bending moment is impose
a filament end.! The angle of this bend will be at most of th
order of the macroscopic straine in the affine regime. This
results in a bending elastic energy of orderke2/ l b per cross
link, compared with the longitudinal elastic energy of ord
me2l c per segment between cross links. Noting thatl b

2

5k/m, we find that the latter term~which corresponds to the
freely rotating cross-link case! is larger than the former by a
factor of orderl b / l c .

For simple mechanical networks atT50, as we consider
in most of this paper,l b is of the order of the molecula
diameter, which is much smaller than the distance betw
overlapping filaments, let alone cross links in any real ac
network. In thein vitro networks that have been studied, w
expect this ratio to be no larger than at most a few percen
the case of networks at finite temperature, as we discus
Sec. V, l b;Al c

3/,p, for which the ratio above is of orde
Al c /,p. By definition, this is smaller than 1 for semiflexibl
networks. Thus, in any case, the corrections to the af
elastic moduli due to possible fixed-angle cross links~in iso-
tropic networks! are expected to be small.

In the related studies by Wilhelm and Frey@44#, who also
consider theT50 mechanical properties of networks such
ours, the authors looked at both fixed-angle and freely ro
ing cross links. They found that the rigidity percolation tra
sitions occurred at somewhat different values of concen
tion for fixed-angle and freely rotating bonds. But, th
report that very similar behavior was observed for the t
cases above the critical points. Specifically, they found
statistically significant difference in the dependence of
shear moduli with concentration in the nonaffine elastic
gime. Thus, it would appear that no substantial differen
due to the mechanics of cross links can be expected in e
affine or nonaffine regimes, at least for the relatively spa
isotropic networks that actin forms.
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APPENDIX

The filaments are deposited into the shear cell as alre
described in Sec. II. This is internally represented by the
of points $xi% consisting of all cross links and midpoint
between cross links~the midpoints are included so that th
7-13
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first bending mode between any two cross links is rep
sented!. Relative motion between thexi contributes to the
system Hamiltonian according to discrete versions of E
~1! and~2!. A change in separation froml 0 to l 01d l between
any two adjacently connected points incurs an energy co

dHstretch5
m

2 S d l

l 0
D 2

l 0 . ~A1!

In addition to this, a nonzero angledu between the vectors
xi2xi 21 and xi 112xi , wherexi 21 , xi , and xi 11 are con-
secutive adjacent points on the same filament, contribute

dHbend5
k

2 S du

l 8
D 2

l 8, ~A2!

where l 8 is the mean of the lengths to either side of t
central point, i.e. l 85 1

2 (uxi2xi 21u1uxi 112xi u). Cross-
.

ate

an

u

as
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linked filaments are coupled by imposing the samexi at in-
tersections, but there is no energy cost for relative ang
between filaments: cross links can freely rotate.

Each contribution~A1!, ~A2! is linearized with respect to
changes in thexi and summed to create the system Ham
tonian H($xi%). Either a uniaxial or a shear straing is ap-
plied to the system through the periodic boundaries in
Lees-Edwards manner@58#. The HamiltonianH($xi%) is then
minimized with respect to the$xi% by the conjugate gradien
method@59#. Two optimizations are included. The Hessia
matrix Ai j 5]2H/]xi]xj is preconditioned byM 21, whereM
has the same diagonal 232 matrices ofA but is zero else-
where. Furthermore, cross links that lie within a given sm
distance, typically'1023L, are coalesced. This improve
the conditioning ofA and hence the speed of convergen
considerably, while producing only minimal change in t
measured quantities, except precisely at the transition.
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@49# J.A. Åström, J.P. Mäkinen, M.J. Alava, and J. Timonen, Phy

Rev. E61, 5550~2000!.
@50# D.A. Head, F.C. MacKintosh, and A.J. Levine, Phys. Rev.
06190
e

-
-
d

68, 025101~R! ~2003!.
@51# D.A. Head, A.J. Levine, and F.C. MacKintosh, Phys. Rev. Le

91, 108102~2003!.
@52# M. Sahimi, Heterogeneous Materials~Springer-Verlag, New

York, 2003!, Vol. 1.
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