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How Sandcastles Fall
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Capillary forces significantly affect the stability of sandpiles. We analyze the stability of sandpiles
with such forces, and find that the critical angle is unchanged in the limit of an infinitely large system;
however, this angle is increased for finite-sized systems. The failure occurs in the bulk of the sandpile
rather than at the surface. This is related to a standard result in soil mechanics. The increase in the
critical angle is determined by the surface roughness of the particles, and exhibits three regimes as a
function of the added-fluid volume. Our theory is in qualitative agreement with the recent experimental
results of Hornbakeet al., although our interpretation differs. [S0031-9007(98)05798-6]

PACS numbers: 81.05.Rm, 68.45.Gd, 91.50.Jc

The continuum mechanics of most materials was eseriterion for failure is that
tablished in the 19th century; however, the mechanics
of granular materials is still largely mysterious [1]. The T> ko, 1)
study of granular media is also motivated by the ubiquity
of this form of matter in a variety of industrial contexts, wherer is the tangential stress across some plane interior
as well as in geophysical ones. to the sandpileg is the normal compressive stress across
While most recent attention has focused on dry granuthat plane, and is the internal friction coefficient. For a
lar media, a recent experimental study by Hornbakegiven stress state stability requires that there be no plane
et al. has opened the relatively unexplored subject of “hufor which the ratio ofr to o exceeds.
mid” granular media, in which small amounts of added Consider a semi-infinite dry sandpile, whose surface is
fluid generate, through capillarity, adhesive forces betweenriented at an anglé to the horizontal. We choose an
the grains [2]. Somewhat whimsically, these authors arx — z coordinate system, in which gives the distance
gue that their work is appropriate for the understanding ofrom the surface of the pilez(> 0 down) andx gives the
sandcastles; we actually take this point seriously, becausiistance parallel to the surface. Then the stress tengor
adhesive forces and other liquid effects are extremely imsatisfies the static equations
portant in geophysical applications, of which sandcastles
are an unusual example. 9,0, + 0,0, = pgCOSOH, 2
In this Letter, we present a theory of the stability of
humid sandpiles, based upon a continuum analysis of their
of dry sandpies concentrated o the behavior of the pile {1616 IS the density of the sandpie. To solve these
. " .~ ‘equations, we first restrict ourselves to solutions which
surface [3], we find that the addition of small adhesive functi f lone—in a semi-infinite svstem
forces between the grains causes the site of failure ggre functions ‘otz a . y ’
. - any x dependence of the solutions would be liable to
move from the surface into the bulk of the sandpile,

a well-known fact in soil mechanics. Even though thegenerate arbitrarily large stresses near the surface, which

failure of the sandpile at the critical angle occurs atWOUId cause the system to buckle. The most general

some finite depth, in the limit of infinite-system size theéj}%‘?ﬁgg?ﬁ;ﬁﬁggﬁﬁa&h:ghst?éss(; ; 225?55 the boundary
critical angle is actually unchanged by the adhesion. For '

0,0 T 0x0x = pg sing, (3)

finite systems the angle of repose is increased from the o, = pgzCcosh, 4)
infinite-system/nonadhesive critical angle. By analyzing ]

the cohesive effect of small amounts of wetting fluid, we Ty = pgzsing, (5)
find that this increase in the critical angle as a function

of the added-fluid volume exhibits a range over which o = C(2). (6)

the dependence is linear, in agreement with the principal The well-known stress indeterminacy in granular media
result of Hornbakeet al. However, we disagree with the implies thatC(z) is at this stage an unknown function.
suggestion of these authors that most of the wetting fluidhere have been a number of proposed closure schemes
will be found outside the particle contact zones. for the stress equations, including elastic, rigid-plastic,
To determine the stability of a sandpile, we mustand elastoplastic constitutive relations [4]. Beyond this
have a criterion for local failure of the sandpile. For avariety of methods of closing the stress equations, it is
nonadhesive (dry) sandpile, a simple phenomenologicaiot even clear that our problem is well posed. The stress
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state, and thus the critical angle, may well depend on th&nction of depth, is

manner of preparation of the medium. s -1
Nevertheless, there is a classical method of obtaining k= tanG(l + 7A> . (11)

an upper bound on the critical angle, due to Mohr and P8z cosd

Coulomb, which we also expect to provide, at the verynote that our Mohr-Coulomb analysis, now local, applies
least, a good estimate of this angle. This method is to fin@n|y at the incipient failure depth and does not determine
the form of C(z) which maximizeshe critical angle. The the global stress state of the sand pile.

angle thereby obtained will be an upper bound on the true The criterion thus derived, Eq. (11), is most stringent as
critical angle; furthermore, if the true constitutive relations; _, «, in which case the dry sandpile resajt = tan™! k
allow the sandpile to adjust the streS¢z) within some s recovered. On the other hand, for a sandpile of fixed

range (by local rearrangement of grains, or hysteretigiepthp, the failure must occur at most at def@h Thus
frictional effects), we expect that this upper bound will bethe critical angle will be the solution of the equation
close to the critical angle. We briefly review the Mohr-

-1
Coulomb method, and then apply it to the humid case. k = tand,(D) (1 + S—A) i (12)
Clearly the functionC(z) that will maximize the critical pgD cosb. (D)

angle will have the fornC(z) = C’z. We first determine . . . .
theg principal stresses, which are the eigenvalues of th@Ving a critical anglef(D) that decreases monotonically

stress tensor. From Egs. (4)—(6) we find that theséfVith D. Th_qs finite humiq sandpiles have a .dep'th-
eigenvalues are dependent critical angle, unlike dry sandpiles, which is a

well-known result in soil mechanics [5]. In addition, we

_ 9 l+c, [+ c)? ttarg — see that humid (i.e., cohesive) sandpiles fail at depth. In
T12=2p8 COS 2 a ¢ ]-  the case of small adhesion stresgpgD < 1, we can
write

(7
—1
wherec = C'/pg cosf. Both of these eigenvalues de- se¢tan " (k)]. (13)
pend linearly onz, the depth below the surface (in the |f as we are assuming, the adhesion arises from

direction normal to the surface). The maximum value ofcapillary forces, we must still connect the adhesive stress
/o as a function ofc and the plane across which this to the amount of fluid present. We suppose that the sand

k
tanf. = k + 54
pgD

ratio is computed is is composed of macroscopically spherical grains (radius
2 R) whose surface roughness may be characterized as
T (1 +¢) : . kit
— = - 1. (8) follows: the spatial correlation of fluctuations in local
T | 4(c — tart 9)

surface height saturates at heidhtat a lateral distance

Now this quantity must be<k, so to find the maximum d that is much smaller than the particle radius,<
critical angle, we minimize the right-hand side of Eq. (8)R- Since the particles are macroscopically spherical, we

with respect toc. We then find that at this minimum require thatz < R (see Fig. 1).
value ofc, We can characterize the surface roughness of two par-

ticles in contact by considering the functidix) which
= tand, (9)  gives the average distance between the two particles a lat-
max eral distancer from an asperity at which the two particles

so that the critical angle i®, = tan™! k, which is the are in contact. We writé(x) in the form [6]
classical Mohr-Coulomb result [5].

Now consider a sandpile in which a normal adhesive 8(x) = Igf(x/d), (14)
stresss, is exerted across every plane, in addition to
whatever other stresses may exist due to the body force¥.
This stress introduces a normal force between pairs of wX w—0,
contiguous particles which allows the sandpile to support fw) ~ { 1
a finite shear stress, even in the limit of zero applied o
compressive stress. The maximum supported shear streddle roughness exponenfy, of the surface satisfies

in this case, i%s4, and we therefore replace the dry sand) < x = 1. _ _
failure criterion, Eq. (1), by Note that this form can only be valid for < /IgR.

For larger values ok, the macroscopic curvature of the
particles will determine the local distance between them
(see Fig. 1).
For such particles, there are three regimes for the
Performing a calculation similar to the one above, wecapillary force exerted by a wetting fluid as a function
find that the failure criterion, which is now an explicit of V, the total amount of fluid present per particle contact.

g

heref(w) is a scaling function with the limits

(15)

w — 0,

T > k(o + sa). (20)
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Asperity regime—For the smallest values of, the
capillary force is dominated by the accumulation of fluid
around a single or a small number of asperities at which
two neighboring particles are in contact. This will hold
until the lateral extent of the fluid-filled region exceeds
d, determining a maximum contact fluid volume for this
regime,V, ~ Izd>.

We can write the adhesion forgg as

fa=1A (16)

r

where I is the surface tension of the fluid, is the
radius of curvature of the meniscus of the fluid layer
connecting the two grains near the asperity, and V /8

is the area of the contact patch-T'/r is the pressure
reduction due to the capillary meniscus. Becauseill

be approximately the distance between the particles at tHdG. 1. The contact zone between two rough particles of
meniscus. we find radiusR. The scale of height deviations from the mean is
' lr, and the height fluctuations are correlated over a distance

r/v /@ty The lateral size of the contact zone in which the macroscopic
P~ ARA ) (A7)  curvature of the particles is not apparenti§/IzR.
R\ V1

and the adhesion force is
rv,(v 2=x)/2+x) role. In this case the pressure is given by [7]
~ (7) , forv <Vv;, (18) r
! P=——— (21)

JV/27R’

fa

Iz

whereV, = [rd>.

For a rough surface where = 1, Eq. (18) shows that and the force by
the force depends on the cube root of the fluid volume.
This is identical to the dependence of the cohesive force fa=2aTR, forv>"V,, (22)
between a cone and plate on the volume of the liquid

bridge connecting them [2]. Itis to be expected that thgypich is independenof the volume of the liquid bridge
cone-and-plate model will reproduce the cohesive forc‘foining the two grains. Thus the linear increase of the

near a single asperity. , cohesive force with fluid volume saturates for volumes
Roughness regime-For larger values oV, the fluid - V, = 3R (see Fig. 2).

will occupy a statistically rough region, which is still small |t the fluid wets the surface of the particles, then, in

enough that the macroscopic curvature of the particlegqgition to the fluid in the contact region, there will
plays no role—however, the fluid occupies more than the

volume around a single asperity. This regime occurs for

Vi < V < V,, whereV, = [R. The pressure is ¢ I ; II m .-
A e
e (19)
Ir
and the force will be
rv
fA’Vl—z, forvV, <V <V,. (20)
R
In this roughness regime, the cohesive force is linear

in the volume of the added fluid, reproducing the linear \ V2 \%
dependence found by Hornbaledral. _ )
Spherical regime—When the lateral extent of the FIG. 2. The behavior of the adhesive force between two

; : . . rough, “spherical” particles. The three regimes of the force vs
fluid contact exceedd, then the wetting region will be 5 1ime of the wetting layer are I, asperity regime; II, roughness

determined by the macroscopic curvature of the particlesegime; and I, spherical regime. The insets show the extent
and the surface roughness will no longer play a significantf the wetting region typical of each regime.
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also be a layer of fluid of thickness on the surface claimed that the failure of their systems was at the surface,
of the particles. Typically, this film will be no thicker and concluded that they could account for their results

than a few monolayers; hence, there are a complicately assuming that 99.9% of the fluid was outside of the

set of forces between this film and the surface. Tocontact zones between the particles. Their particles had a
simplify, we consider only the van der Waals forces,surface roughness on the orderlofim .

which for a thickness generate a “disjoining pressuréy We find that the increase in the critical angle is linear
given by [8] with the fluid volume in the roughness regime, up to
2l the saturation result Eq. (27). We expect the Hamaker

P, = = (23) constant for a wetting fluid to be negative, and of the

order of magnitude o ~ 10~2° erg, so no more than

where H is the Hamaker constanH(< 0 for a wetting & féw monolayers of fluid should be present on the
fluid). To determine the thickness of the wetting region,pa_rt'de surfaces. Furtherm'ore, in the Ilnea_lr regime, all
we must set this disjoining pressure equal to the pressuffit/id added to the system will enter the particle contacts.
inside the contact regions. If the radius of curvature of thel NUS We disagree with the claim that the overwhelming

contact meniscus is. then majority of the fluid in this case will be outside the contact
’ 13 zones. Finally, we disagree with the interpretation of
. 2Hr their experiment, according to which surface failure is the
t=|—-— (24)
r ' most relevant failure mode—the failure plane in cohesive

materials should be at depth.

We are grateful to P. Schiffer for providing us with
copies of Ref. [2] before publication and to D. Extyr
many useful discussions. After completion of this work,

Yive learned of independent work by L. Bocqetal. [9].

Now consider a system with a volumé of liquid per They performed the Mohr-Coulomb analysis leading to

particle. If we suppose that the spheres are close packegq'.flls)’bagd also concollude_d th?t the sltlredngth Off the
then each sphere has 12 neighbors, so there is an avere{:aéal hary ridges was predominantly controlied by surtace
of 6 contacts per sphere, each with a fluid volume o Ughness.
V = V,/6. The average number of contacts per unit area
will be (3¢y/7R?), wheregy is the volume fraction of

the particles. Thus for a close-packed lattice, for which

¢y = /2 /6, the adhesive stress will be approximately [1]

In the asperity regime,will increase with the meniscus
radius of curvature. In the roughness regime, howewer,
saturates at a valuely, and ¢ will be constant. In this
regime any added fluid enters the contact region. Finall
in the spherical regime, will again increase.
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