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Filamin Cross-Linked Semiflexible Networks: Fragility under Strain
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The semiflexible F-actin network of the cytoskeleton is cross-linked by a variety of proteins including
filamin, which contains Ig domains that unfold under applied tension. We examine a simple filament
network model cross-linked by such unfolding linkers that captures the main mechanical features of
F-actin networks cross-linked by filamin proteins and show that, under sufficient strain, the network
spontaneously self-organizes so that an appreciable fraction of the filamin cross-linkers are at the
threshold of domain unfolding. We propose and test a mean-field model to account for this effect. We
also suggest a qualitative experimental signature of this type of network reorganization under applied
strain that may be observable in intracellular microrheology experiments of Crocker et al.
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The cytoskeleton of eukaryotic cells is a cross-linked
biopolymer network [1-3]. Its principal constituent is a
stiff filamentous protein aggregate (F-actin) that is cross-
linked densely on the scale of its own thermal persistence
length. Because of the combination of filament stiffness
and dense cross-linking this semiflexible polymer gel dif-
fers fundamentally from the better understood flexible
polymer gels that are the products of modern synthetic
chemistry.

There has been considerable progress in understanding
the complex relationship between the mechanical proper-
ties of semiflexible networks and the mechanical properties
of their constituent filaments [4—11]. Still, the current
understanding of semiflexible networks is based on sim-
plified systems, while the cytoskeleton is a highly hetero-
genous chemical system. Cytoskeletal filaments are
polydisperse in length and have a greater distribution of
mechanical properties than the model systems studied.
Furthermore these filaments are cross-linked by a plethora
of highly structured proteins that play an active role in
generating internal stresses and in sensing externally im-
posed stress. One class of cross-linking proteins (e.g.,
filamin) contains numerous repeat “Ig” domains that un-
fold at a critical pulling force [12,13].

In this Letter we explore one aspect of the chemically
complex cytoskeleton and show that, for a sufficiently
stretched filamin cross-linked gel, the population of
cross-links at a certain tension grows exponentially or
faster up to the unfolding force of the domains. Thus at
moderate applied stresses the system appears to adjust its
mechanical properties so as to achieve a strain state in
which a significant fraction of its cross-linkers are poised
at the unbinding transition of their internal domains.
Molecular motor activity acting on this cross-linker popu-
lation should yield a broad, continuous distribution of
relaxation time scales via mechanically induced subcritical
cross-link unfolding. Such a broad relaxation time distri-

0031-9007/06/97(6)/068104(4)

068104-1

PACS numbers: 87.16.Ka, 62.20.Dc, 82.35.Rs

bution has been termed soft glassy rheology [14] and has
been observed in the cytosol [15] by measurements of low-
frequency intracellular strain fluctuations. In our model
this fragile state is generated by externally applied stress,
but we expect an in vivo network built with filamin cross-
linkers to evolve into such a state due to the action of
internal molecular motors (e.g., myosin—not considered
in our model).

We study via numerical simulation a random, statisti-
cally homogeneous, two-dimensional, isotropic filament
network. These networks are formed in a manner identical
to that of Head er al. [8]. At filament intersections we add a
cross-linker of zero rest length that exerts constraint forces
but no constraint torques. Part of a model network con-
structed by this procedure is shown in Fig. 1. The filament
sections between cross-links are modeled as independent
linear springs with fixed extension modulus w. The large

D7 X7

= A A
«f'!l’,%r'@%g.!}

v @RS
N S

/1
RS

;’/1 ‘\{

by o

S

A
A"n

2

5‘ 4
"
SN

A
KRR
XY N

FIG. 1 (color online). One quarter of a model network showing
the F-actin filaments in blue and the filamin cross-linking agents
in red.
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deformation, nonlinear behavior of semiflexible networks
with freely rotating cross-links has been shown to be
dominated by semiflexible filament stretching instead of
bending [16]. For this study we neglect filament bending,
allowing the filaments to bend without energetic penalty at
each cross-link point. We anticipate that our results are
essentially independent of network dimensionality since
network connectivity, not the dimensionality of the space
in which the network is embedded, should control the
collective mechanical properties of the system.

At forces below the unfolding force, the force-extension
relation of the filamin cross-linkers is that of a wormlike
chain [17]. When an Ig domain unfolds the contour length
of the filamin increases, adding enough length to relax
most of the tension at fixed extension. For simplicity, we
model the filamin as a simple spring with spring constant
ks and we take the additional contour length generated
during any unfolding event € to be a constant. The critical
unfolding force of a domain is k€. We neglect the rate
dependence of this unfolding force [18]. Though the physi-
ological filament cross-linkers have a finite number of
unfolding domains (24), we will take our sawtooth force-
extension curve to have an infinite number of branches.

Our network has periodic boundary conditions and is
sheared by adding a constant horizontal offset to filaments
that crossed the top and bottom boundaries. At the begin-
ning of each strain step all nodes are moved affinely, then
the node positions are relaxed by a conjugate gradient
routine to reach local force equilibrium. Since the cross-
linker force-extension curve is a sawtooth, there are many
possible equilibrium states of the network. The multiplicity
of equilibrium states requires the use of imposed displace-
ments smaller than the sawtooth length €, so that equilib-
rium is achieved at the smallest filamin extension. Such a
procedure is computationally intractable in light of the
need to average our results over many realizations of the
network. To reduce this computational overhead we use a
two step equilibration procedure that finds a state close to
desired one, but allows for strain steps 100 times larger. In
the first step we replace the sawtooth force law for the
cross-linkers by the following:

kex
f ——{ f
kfef

Ix| <€, 0
x| = €.

The combined network of linear elastic filaments and
constant force cross-links is equilibrated. We then reim-
pose a sawtooth force law for the cross-linkers and equili-
brate the network again. As the network relaxes during this
final equilibration step, the force on each filamin must be
less than k;€;, so the cross-links will stay on the same
sawtooth branch. Since the rest of the network was origi-
nally equilibrated at the critical pulling force, the sawtooth
force law could not have reached force equilibrium on any
earlier sawtooth branch assuming all filamin linkers act
independently. In practice, collective relaxations of the

network push individual cross-links onto different saw-
tooth branches in this final step. We found, however, that
such coordinated relaxation events had a negligible quan-
titative effect on the data.

We study networks at a filament density such that there
are on average 30 cross-links per filament. At this cross-
link density we find the network behavior is independent of
total filament length for lengths greater than 0.1 (in simu-
lation units). Accordingly, we used monodisperse filaments
of length 0.2. This construction produced an average of
1100 filaments and 16500 cross-links per network in-
stance. For these values we find negligible system-size
effects. The average distance between cross-links is then
(€,) =0.2/30 = 6.7 X 1073, This construction has been
shown to produce an exponential distribution of €, [19].
The length of the filamin domains (the sawtooth length) is
setto €, = 1.3 X 1073, so that €;/(€.) = 0.2. This ratio is
approximately equal to the expected physiological value
[20,21] (taking (£.) ~ 0.1 um for dense networks). To fix
an energy scale we set the extensional modulus w of the
filaments to unity. The average spring constant for a fila-
ment segment can then be determined from the mean
distance between cross-links by kp = 1/(€,) = 150. The
range of cross-linker spring constant values studied here is
10" < ks < 10*.

Figure 2 shows the measured equilibrium distributions
of cross-link lengths, modulo the sawtooth length €, for
strained networks having several values of spring constant
k. The statistical weight for finding a cross-link extension
(modulo €) is exponentially enhanced towards length €
for values of k; < 10 X (kg) and grows faster than expo-
nentially near length €, for values k; > 10 X (kg). The
enhancement of the number of such filamins poised at the
unbinding transition (critical cross-linkers) is one of prin-
cipal results of our work. Apart from the noise floor, the
shape of the distribution appears to be strain independent.
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FIG. 2 (color online). Distribution of normalized cross-linker
lengths £/€; modulo 1 in equilibrated networks with, from
shallowest to steepest slopes, respectively, k; = 100, 200, 600,
and 2000.
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To understand the growth of the critical cross-linker
population, we consider a mean-field model for the behav-
ior of a single cross-link in an effective elastic medium
representing the rest of the network. The surrounding
effective medium is modeled as a single harmonic spring
with spring constant k. Reflecting the network structure,
the cross-linker is connected in series with the effective
network spring. We set the total strain on the two springs in
series (by fixing their total length) so that the cross-link has
crossed at least one branch of the sawtooth function. Upon
the further application of extensional strain, the two
springs in series will both linearly increase their extension
until the filamin spring with spring constant k, reaches is
maximum force k€, where it is poised at the top of its
sawtooth force-extension curve.

Now consider an infinitesimal increase in the total ex-
tension that drives the unfolding of one more filamin
domain. Before the extension the two springs were in force
balance so that k€, = kx where x represents the extension
of the medium spring. After the infinitesimal extension, the
system achieves force balance on the next branch of the
saw-tooth filamin force-extension curve so that the exten-
sion of the filamin spring is now increased by €, — d while
the extension of the medium spring is decreased to x —
(€4 — d). Force balance requires that d, the distance be-
tween the current extension of the filamin spring and the
edge of the next sawtooth, is given by d(k) = k€,/(k +
ky). In other words, the combined system once equilibrated
with the filamin spring at its maximal force is now equili-
brated with that filamin spring on its next sawtooth branch
at a smaller force. The strain in the surrounding medium
has also decreased due to the extension of one more filamin
domain.

To maintain force balance, the filamin spring cannot
relax its length more than €, — d. Upon further extension
the filamin spring will only extend until another domain
unbinds. Thus in steady-state the filamin spring will evenly
sample all extensions (modulo €,) between €, — d(k) and
€. For a given value of the spring constant of the medium
we expect that the extensions (modulo €;) of the filamin
cross-linkers x; to be uniformly distributed between the
bounds given above so that this distribution can be written
as

P(xy, k) = d(k) 'O (x; — [€; — d(k)]), (2)

where O is a step function. Different cross-links in the
network, however, will not have the same local environ-
ments; the values of k will be sampled from some statistical
distribution K(k). Integrating over that distribution we
write the probability of finding a given filamin length
(modulo €;) x:

P(xs) =
( ? «/;f("f—xf/xf) Crk

The step function fixes the lower limit on the & integral.

K(k)dk. 3)

We examine the distribution of the local spring constants
in the random network and concentrate on the high-£ tail of
that distribution. One may imagine that the value of the
effective spring constant of the medium is controlled by
small number of chains of many springs. Each chain of
springs represents one path for force propagation through
the random network and is made up of a large number of
statistically independent springs connected in series. In
order to find an extremely large value of the effective
spring constant k it must be that for one of the force paths
all of the constituent spring constants are large, since the
compliance of the springs in series will be dominated by
any single soft spring. We expect the probability of such a
rare event to be Poisson distributed so that, in the high-k
tail, the distribution K(k) takes the form

K(k) ~ H(k)e ¥/, “4)

where H is some regular function characterizing the
small-k behavior of the distribution (H(x) — const as x —
o0) and the constant k is undetermined. We note that our
arguments justifying this exponential form for the distri-
bution are independent of network dimensionality, and thus
the distribution should be the same for three-dimensional
networks. Combining Egs. (3) and (4), we find that P(xf)
takes the form

K ke — €O\ ko k(0 —
Plxs) = eﬁ exp(—f (xlé ! )> + g—fl“<0, Kty — ) )>,
f Xy f kxg

&)

where I' is the incomplete gamma function, as long as

kfef—/xf is large enough that K(k) within the integral in

X

Eq. (3) can be replaced by its high-k asymptotic form.
Equation (5) shows the sought after exponential peak as
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FIG. 3. Distribution of local effective spring constants,
sampled on small sets of highly stretched filamin cross-linkers
with k; = 600. The solid line is a fit to Eq. (4) with kf/ k set to
7.3.
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Using Eq. (5) we may determine the ratio k/ k using the
slope of the numerically measured distribution P(x,)
shown in Fig. 2. Fitting the data for k; = 600, we find
ke/ k = 7.3. By numerically sampling the local mechanical
response in many realizations of the network, we indepen-
dently verify the principal physical insight in the above
discussion: for small values of k, K(k) has an exponential
tail in the high-k limit. These data are presented in Fig. 3
for k; = 600. The dashed line shows the expected asymp-
totic (high-k) exponential distribution of the local effective
spring constant with k;/k = 7.3 as required to fit the P(x;)
using Eq. (5). The quantitative agreement between the
measured decay rate of the distribution (crosses) and that
calculated from the mean-field theory using the observed
filamin length distribution P(x;) supports the mean-field
theory. More generally, we find that even if the local spring
constant distribution K(k) strongly deviates from a simple
exponential form (as it does at higher values of k) the
basic relation between P(x;) and K(k) given by Eq. (3)
holds [22].

We have found that the strained filamin cross-linked
network develops into a fragile mechanical state in which
a large fraction of the cross-linking filamins reach a critical
strain where they are poised at the brink of domain unfold-
ing. While this work explores a nonthermal system, we
expect that thermal fluctuations will merely unbind the
subpopulation of cross-linkers within kzT/k€; of their
unbinding length and thereby lead to decreased value of the
effective €, in our model [15]. Fluctuating internal stresses
in the system due to molecular motor activity acting on this
highly fragile state should produce large strain fluctuations
due to the coordinated failure of the many critical cross-
linkers. The formation of this critical state under stress may
explain the necessity of filamin for the enhancement of
low-frequency intracellular strain fluctuations [23]. This
behavior should manifest itself once the average stress per
filament exceeds the Ig domain unfolding stress of
~100 pN [21], which for a dense network of ten filaments
per um? of cross section amounts to ~1 kPa of applied
stress.

We have presented a simple, mean-field theory that
successfully explains the development of this fragile state
under applied strain. There are a number of extensions of
this work that remain to be considered. Foremost among
these is the exploration of the effect of filamin-type cross-
linkers in semiflexible gels where the filaments each have a
finite bending modulus. The development of a complete
model that includes the effect of internally generated ran-
dom stresses due to the action of molecular motors will
also be an important step towards the direct calculation of
the low-frequency dynamics of this biopolymer gel that
determines cellular mechanics.
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