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Effective medium theory of semiflexible filamentous networks
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We develop an effective medium approach to the mechanics of disordered, semiflexible polymer
networks and study their response to both spatially uniform and nonuniform strain. We identify
distinct elastic regimes in which the effective filament bending stiffness or stretch modulus vanishes.
We also show that our effective medium theory predicts a crossover between affine and non-affine
strain, consistent with both prior numerical studies and scaling theory.
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Semiflexible polymer networks form a distinct class of
gels whose mechanical properties remain at the frontier
of both biophysical and materials research. These cross-
linked polymer networks differ substantially from the
flexible polymer gels and rubbers [1] due to the rigidity of
the individual polymers [2, 3]. Because the thermal per-
sistence length of the constituent filaments is much longer
than the typical distance between cross-links, these mate-
rials can store elastic strain energy in both stretching and
bending deformations of the filaments. The cytoskele-
ton of eukaryotic cells is a ubiquitous example of such
a semiflexible network since it is composed of densely
cross-linked, stiff protein aggregates [4]. This network
dominates the mechanical properties of the cytosol and
lies at the heart of the cellular force production and mor-
phological control.

Theoretical studies of the elastic response of randomly
cross-linked stiff filamentous networks have recently un-
covered a surprising cross-over between distinct mechan-
ical regimes of these semiflexible networks [5, 6]. For
given filament elastic parameters there is a transition
from strain energy storage in filament stretching modes
at higher network densities to filament bending modes
in more sparse networks. This transition is accompanied
by a change in the geometry of the deformation field over
mesoscopic lengths. At higher densities the network de-
forms affinely as expected from continuum elasticity the-
ory while at lower densities, where the elastic energy is
stored in bending modes, the network deformation field
is nonaffine over large mesoscopic distances. Recent ex-
periments [7] support the existence of this affine (A) to
nonaffine (NA) cross-over. A fundamental understand-
ing of the relation of the network architecture and indi-
vidual filament mechanics to the collective elasticity of
the network remains elusive. The previous theoretical
work had numerically identified the cross-over in simu-
lated networks and provided a scaling argument to ac-
count for the dependence of the critical network density
upon the mechanics of the constituent filaments. This
work, however, was unable to account for the dependence
of the elastic moduli on filament properties and network
density except in the affine regime.

In this letter we develop an analytical model of the

mechanical response of two-dimensional disordered semi-
flexible networks. We introduce a mechanical mean-field
or effective medium theory of the system that allows us
to calculate the elastic response of the system to uni-
formly imposed as well as wave number dependent strain
fields. From this mechanical response we identify an
A/NA cross-over and obtain a phase diagram of the sys-
tem showing the affine and non-affine regimes in addition
to the mean-field rigidity percolation transition [8, 9].
Our study of the collective shear and bending moduli of
the system demonstrates the presence of a natural length
scale controlling the A/NA cross-over that corresponds to
the analogous quantity determined from the earlier scal-
ing theory and numerical data [6].

We study a model two-dimensional system constructed
as follows. We arrange infinitely long filaments in the
plane of a two-dimensional hexagonal lattice so that at
each lattice point three filaments cross and that each lat-
tice point is connected to its nearest neighbor by a single
filament. A sketch of the network is shown in Fig. 1. The
filaments are given an extensional spring constant αm

and a bending modulus κm. The cross-links at each lat-
tice site do not constrain the angle between the crossing
filaments. We introduce quenched disorder into this fila-
ment network by cutting bonds with a probability 1− p,
0 < p < 1 and study the zero frequency mechanical re-
sponse of this disordered semiflexible network to uniform
and inhomogeneous deformation fields in the linear re-
sponse regime. Here, we do not explicitly consider ther-
mal fluctuations, whose role in determining the longitu-
dinal compliance of filaments has been discussed before
[10]. These thermal effects can be incorporated in the
present model through the parameter αm [6].

The elastic energy of the strained network, which arises
from the bending and stretching of the constituent fila-
ments, can be written in terms of the displacement vec-
tor ui at each lattice site i. To quadratic order in u the
stretching (Es) and bending (Eb) energies are

Es =
1

2
αm

∑

〈ij〉

(uij .r̂ij)
2

(1)
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FIG. 1: (color online) Schematic figure of the filament net-
work. The solid red lines represent the undeformed fila-
ment network, while the dashed blue lines show the deforma-
tion field having wavevector q and displacement amplitude
u (shown in the upper left corner of the figure). The black
arrows show the displacement field at each lattice point. This
perfect lattice is disordered by making randomly placed cuts
in the infinitely long filaments. These are not shown.

Eb =
1

2
κmR−2

∑

〈ĥij〉

(uih × r̂ij − uij × r̂ih)2 , (2)

where R is the equilibrium lattice constant, r̂ij is a unit

vector directed from the ith to the jth equilibrium lattice
site, and uij is the difference in the strain field between
those lattice sites.

It is now simple to determine the collective elastic
properties of the perfect lattice; doing so for the disor-
dered lattice generated by randomly cutting the filaments
is less trivial. We determine below the spring constant
and bending modulus of a spatially uniform effective sys-
tem [11] that reproduces the mechanics of our disordered
system in an average sense, as we describe below.

We first apply a uniform dilation to our system so that
all bonds are stretched by δℓ. There is no bending de-
formation. If we now replace a single filament segment
connecting points (say) i and j (see Fig. 1) by one of
spring constant α, the virtual force needed to the fix po-
sitions of i and j is f = δℓ(αm −α). If f were applied to
the same segment in the unstrained network its change
in length would be f/αeff where αeff = αm/a∗ − αm + α
is the effective spring constant between lattice points i
and j with a∗ (0 < a∗ < 1) being a network material
parameter that includes the contribution of the elasticity
of the entire network. It may be written in term of the
dynamical matrix of the lattice D(q) as

a∗ =
1

3

∑

q

Tr
[
Ds(q) · D−1(q)

]
(3)

where the sum is over the first Brillouin zone. Ds,b(q),
D(q) = Ds(q) + Db(q) define respectively the stretching

and bending contributions to the full dynamical matrix
and are given by

Ds(q) = αm

∑

〈ij〉

[
1 − e−iq.r̂ij

]
r̂ij r̂ij (4)

Db(q) = 4κm

∑

〈ij〉

[1 − cos(q.r̂ij)] (I − r̂ij r̂ij) (5)

with I the unit tensor and the sums are over nearest
neighbors.

Due to linearity it follows that the additional displace-
ment of this bond without the virtual force is δu =
δℓ(αm − α)/αeff . The extra displacement δu of the seg-
ment due to change in that filament segment’s spring con-
stant in the dilated network is the same as its extension
in response to the force f being applied to it. Therefore
we write the extra displacement on an arbitrary bond
due to the substitution of a new elastic element as

δu =
(αm − α)δℓ

αm/a∗ − αm + α
. (6)

We now average this extra displacement over the en-
semble of possible filament substitutions. In our disor-
dered network we allow each segment to be present with
probability p and absent representing a filament end, or
cut with probability 1−p so that the statistical distribu-
tion of longitudinal spring constants is

P (α′) = pδ(αm − α′) + (1 − p)δ(α′). (7)

To determine the elastic properties of the effective
medium we adjust the medium spring constants αm so
that 〈δu〉 = 0, i.e. the lattice displacement in our spa-
tially homogeneous effective medium material is identi-
cal to the average displacement in the spatially hetero-
geneous disordered material.

Using this procedure we find that the disorder averaged
displacement in a network with spring constant α is equal
to the uniform displacement of a spatially homogeneous
effective medium having spring constant αm given by

αm

α
=

{
p−a∗

1−a∗ if p > a∗,

0 if p ≤ a∗.
(8)

The contribution of network bending to the effective
medium spring constant arises only through the effect
of the bending modulus in a∗ in Eqs. (3,4,5). To de-
termine how the shear modulus depends on the aver-
age filament length we note the mean filament length
is 〈L〉 = pR(2 − p)/(1 − p). We plot in Fig. 2 using the
filled symbols the effective medium spring constant as a
function of mean filament length measured in units of R.

We now consider the response of the network to a q-
dependent strain as depicted in Fig. 1. In a manner anal-
ogous to the uniform dilation studied above we now apply
the q-dependent strain. We now modify both the bend-
ing modulus and spring constant of one filament spanning
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FIG. 2: (color online) The effective medium spring constant
αm (filled symbols) and bending constant κm (open symbols)
with the average filament length 〈L〉 (legend shows different
values of κ, with α = 1).

lattice sites h, i, j so that: κm → κ, αm → α and com-
pute the virtual force and torque needed to maintain the
position of site i in the middle of the triad of lattice sites
above. See again Fig. 1. From these forces using linear-
ity we compute the components of the displacement of
site i along that filament δℓ|| perpendicular to it δℓ⊥ in
response to the elastic constant substitution made above.
We find

δℓ‖ =
(αm − α)(uij + uih).r̂ij

2(αm/a∗ − αm + α)
,

δℓ⊥ =
(κm − κ)(uij + uih).(ẑ × r̂ij)

κm/b∗ − κm + κ
(9)

where a∗ is defined in Eq. (3) and the analogous quantity
b∗ is defined by

b∗ =
1

3N

∑

q

Tr
[
Db(q)D

−1(q)
]

(10)

using the same sum over wavevectors as in Eq. (3). Here
for semiflexible filaments on a triangular lattice interact-
ing via cross-links that do not apply torques, the stretch-
ing and bending modes are orthogonal [12].

We now average these displacements over the disorder,
and, to find the effective medium elastic constants we
demand that the disorder-averaged displacements vanish
so that

〈δℓ‖〉 = 0, 〈δℓ‖〉 = 0. (11)

The probability distribution for α is given by Eq. (7), but
a nonzero value of the bending modulus at site i requires
the presence of both filament segments on either side of
that site so that

P (κ′) = p2δ(κ − κ′) + (1 − p2)δ(κ′). (12)

Since we consider uncorrelated distributions of the
bending and elastic constants we find the effective

FIG. 3: (color online) The effective medium mechanical phase
diagram spanned by 〈L〉 and lb. The thick solid line marks
the rigidity percolation transition where the material acquires
a finite shear modulus. The dashed line shows the crossover
from the non-affine to the affine regime.

medium elastic constants αm and κm by solving Eqs. (9,
11) independently to arrive at

αm

α
=

{
p−a∗

1−a∗ if p > a∗

0 if p ≤ a∗
(13)

κm

κ
=

{
p2−b∗

1−b∗ if p >
√

b∗,

0 if p ≤
√

b∗
. (14)

Figure 2 shows the effective medium values of αm

(filled symbols) and κm (open symbols) as a function
of the filament mean length that is fixed by p for differ-
ent values of single filament bending rigidity κ, at a fixed
value of the single filament spring constant α = 1. The
unit of length is the lattice constant R (set to unity) and
the energy units are arbitrary.

There are three length scales in the system: (i) the av-
erage length of filaments 〈L〉, (ii) a length lb = (κ/α)1/2

associated with the relative ease of filament stretching to
bending, and (iii) the mean distance between cross links,
which, to a good approximation is R = 1[13]. We present
a mechanical phase diagram of our system spanned by
〈L〉 and lb in Fig.3 that shows the regimes corresponding
to zero and finite values of κm and αm. Generically for
long enough filaments the system has a finite collective
extension and bending modulus. As the mean filament
length is reduced the collective shear modulus (propor-
tional to αm) vanishes at the rigidity percolation transi-
tion. There is also predicted a new rigid phase (αm > 0)
that has a vanishing collective bending modulus. We fur-
ther note that the lower range in lb corresponds to non-
thermal systems in which the distance between crosslinks
is large compared with the molecular scale (i.e., at low
volume fraction), but that with thermal effects, one ef-
fectively goes to higher lb.

The collective elastic properties of the effective



4

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

<L>/λ

G
e
ff
/G

0

10
−2

10
−1

10
0

10
1

K
e
ff
/K

0

 

 

0.1

0.05

0.01

0.005

lb

R
2

___

2

FIG. 4: (color online) The effective medium shear Geff/G0

(filled symbols) and bending moduli Keff/K0 (open symbols)
normalized by their respective values for a perfect network are
plotted as a function of the mean filament length 〈L〉 divided
by the nonaffinity length λ = R/(R/lb)

z with z = 0.25. Data
collapse is shown for four data differing in lb. The legend
shows different values of l2b .

medium can be calculated from the stored elastic energy
density E under a given imposed network strain. For
strain field of the form u = Rγ cos(q · x)ẑ × q̂ the shear
Geff and bending moduli Keff can be extracted as the
coefficients of the q2 and q4 terms of 〈E〉/γ2 where the
angled brackets imply an angular average of the direction
of q with respect to underlying lattice. Geff is a function
of αm alone while Keff is a function of κm and αm.

In Fig. 4 we plot the effective medium shear and bend-
ing moduli as a function of 〈L〉. Motivated by earlier
work[6] on the A/NA transition we have rescaled 〈L〉 by
λ = R(R/lb)

z with z = 1/4. A comparison of Geff in this
figure with αeff from Fig. 2 demonstrates a remarkably
accurate data collapse whose accuracy is enhanced as we
move farther away from the rigidity percolation. More-

over, we find that the same rescaling factor generates an
equally accurate collapse of the Keff data.

The single parameter collapse of our calculated elastic
moduli is highly reminiscent of the observed numerical
data collapse semiflexible network simulations. Although
the analytic result gives a scaling exponent z = 1/4
while the previous numerical results were consistent with
z = 1/3, it is tempting to associate the new length scale
introduced (λ) with the nonaffinity length that generated
such a data collapse in the previous work. The effective
medium approach does not allow us to explore the spa-
tial heterogeneities of the strain field under uniformly
imposed shear so it is not possible with this technique to
explore the geometric interpretation of λ.

It should be noted, however, that this effective medium
that fails to account for the correct spatial structure of
the strain field in the disordered material does show an
abrupt cross-over that appears mechanically identical to
the A/NA cross-over and is controlled by a single emer-
gent length scale, λ, which obeys a similar scaling re-
lation to that found empirically from previous numeri-
cal results. From these Geff plots (Fig. 4) we have ex-
tracted the A/NA cross-over from the location of the
largest change in the slope of the curves. This A/NA
boundary is plotted in Fig. 3.

In conclusion, we used an effective medium theory to
explore the mechanical properties of disordered filament
networks. We find that this mean-field approach to the
mechanics of such networks captures the mechanical as-
pects of the A/NA cross-over including the identification
of an emergent mesoscopic length scale λ controlling the
mechanics of the system.
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