PHYSICAL REVIEW
LETTERS

VOLUME 78 26 MAY 1997 NUMBER 21

Self-Organized Short-Term Memories

S. N. Coppersmith,T. C. Joneg, L. P. Kadanoff, A. Levine; J. P. McCarten,
S.R. Nagel, S. C. Venkataramariand Xinlei Wi
'The James Franck Institute, The University of Chicago, 5640 Ellis Avenue, Chicago, lllinois 60637
2Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29694-1911

3Exxon Research & Engineering Company, Route 22 East, Annandale, New Jersey 08801
(Received 17 December 1996

We report short-term memory formation in a nonlinear dynamical system with many degrees of
freedom. The system “remembers” a sequence of impulses for a transient period, but it coarsens and
eventually “forgets” nearly all of them. The memory duration increases as the number of degrees
of freedom in the system increases. We demonstrate the existence of these transient memories in a
laboratory experiment. [S0031-9007(97)03273-0]

PACS numbers: 03.20.+i, 46.10.+z, 72.15.Nj

We present a deterministic nonlinear dynamical systeninteger less than or equal to These equations describe
with many degrees of freedom which self-organizeshe evolution of the positions; of N particles in a
to store memories, in that a configuration-dependendeep periodic potential, with nearest neighbor particles
quantity “learns” preselected values. The system, a@&onnected by springs of spring constank 1, in the
simple discretized diffusion equation, encodes multiplepresence of force impulsefl — A;). They describe
memories during an extended transient period, but, ithe dynamics of sliding charge-density waves (CDW'’s)
the limit of long times, retains no more than two of [1-3], and are closely related to models of a variety
them. This system thus displays a mechanism by whiclof dynamical systems [4]. The one-dimensionak
memories are forgotten as well as learned. independent version of this systefd, = A) has been

We demonstrate: (1) Short-term memories are exhibstudied previously [2,5] (see also Ref. [3]). Here, we
ited by a system with two degrees of freeddim= 2, and  considerA’s which repeatedly cycle throught different
become more pronounced Asis increased. (2) The in- values.
terval in which multiple memories are encoded typically The self-organization that occurs as these maps evolve
grows as the square of the system’s linear extent. (3) manifest in the discrete curvature variables {5{r) =
Many features of the dynamics, including their duration,k > ;. [xi(7) — x;(7)], which obey
can be understood analytically. (4) The mechanism is ro-
bust and is manifest in experiments on a sliding charge—cj(T +1) = ¢j(r) =k Z {intlc;(r) + (1 — A,)]
density wave solid. i(nn)

Consider a system of coupled maps —intle;(7) + (1 — A}

Xj(T +1) = Xj(T) (2)
+ int|:k Z [xi(7) — x;(7)] + (1 — AT):|,

i(nn)

Figure 1 shows normalized histograms of figc=
L - int(c) for a two-dimensional system withM =

5, periodic boundary conditions, and a random initial
wherei, j are the particle indices, the sum is over nearestonfiguration ofx’s. Memory encoding is shown by
neighbors,7 is the time index, and ift] is the largest the accumulation ot’s with frac(c) = frac(A,). For a

0031-900797/78(21)/3983(4)$10.00 © 1997 The American Physical Society 3983



VOLUME 78, NUMBER 21 PHYSICAL REVIEW LETTERS 26 My 1997

0.8

T N = 10 than for N = 2, indicating that larger systems
06 b _ encode transient memories more effectively. At the fixed
wl | point, only one memory (rather than two as in the model
' with periodic boundary conditions) is encoded.
D = N — -7 =230000 In CDW experiments, memory encoding is manifest as
% 00 L1 i L L L_lz= 60000 synchronization of the response to a repeated train of driv-
& oo e 03 10 ing pulses so thav /I (V = voltage,I = CDW current,
v ' which is proportional to the CDW velocitycpw) de-
creases just as each pulse ends. The correspondence be-
005 |- l l i tweenV /I and thec’s is discussed in detail in Refs. [2,3].
7 =45000 Heuristically, it follows because;(r) can be thought of
i i d 4 Lot = 20000 as the position of particlg after pulser, and the int
000 - Y reser=0 functions in Egs. (1) arise because after each pulse ev-
frac(c) ery particle falls into the nearest potential minimum. The

FIG. 1. Memory formation of Eq. (1) in a two-dimensional memory values are at the discontinuities of the int func-
100 X 100 system with periodic boundary conditiong,= tions, Wr,"Ch for the highly overdampgd dynamics reIevgnt
0.0001, initial condition ofx's chosen randomly from the inter- 0 CDW's [1] means that many particles are at potential
val [0,1000000], andZ = 5 (A = [0.1,0.35,0.5,0.75,0.92]). maxima at the end of a pulse. Since particles mounting
P is the proportion ofc’s with fractional parts fra@) within  the potential go slower than those descending it (again,
a bin of width 0.002. For clarity, successive curves are offsejmplied by overdamped dynamics), when many particles
vertically. The lower panel illustrates the short-term accumu-pavec's on memory values, then a preponderance of par-
lation of ¢'s at each value ofi; the upper panel demonstrates . 4 L Lo . .
that at long times only two peaks persist. ticles are at poter?tla_ll maxima, which in turn implies that

the ratiovcpw/V is increasing at the end of each pulse.

. . - Single memory retention using identical pulses has been
while all M memories are encoded to a similar degree;

v all ; ’ | seen previously [7,8]. Here we repomultiple mem-
eventually all are forgotten except for two va_ues40ﬂ61. ory encoding [9]. Figure 3 shows the successful train-
No evolution occurs after the last trace, a fixed point o

h ing of a sample using five different four-pulse sequences
the map (2)- . (current pulses). For this sample, we investigated 25
Figure 2 shows the curvature variableg(r) versus

time 7 for one-dimensional chains with one free and one

. . L)
fixed end: S S
x0(7) = 0; xy+1(7) = xn(7) forall 7. (3)
o ]
. . . S ¥ r
During the evolution, each; sticks at values correspond- =
ing to eachA,. This tendency is more pronounced for =
> - o
~r wor
10
N2 < . S RO
L “ oo 1.0 20 30 's50 60 7.0 B8O
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FIG. 3. Trained voltage response curves of Np&e five
different four-pulse sequences. The evidence for multiple-
memory encoding is the decreasing magnitude of the voltage
at the end of each pulse. (Note the two pulses have opposite
signs. The voltage response for pulses 3 and 4 are not shown.)
The drive is a sequence of four current pulses with magnitudes
[1,-1,1,—1I] and durations 2.95, 2.05, 1.75, ahd5 us. The
drive magnitudd, is 20.76, 21.16, 21.55, 21.94, adpl33 uA

for curvesA, B, C, D, andE, respectively. Training consisted

of over one million pulse repetitions. Measurements were
FIG. 2 Plot of curvatures;(7) versusr for N-particle chains  performed using a two-wire, silver-paint contact configuration.
with fixed-end boundary conditions Eq. (3}, = 0.001 and Sample dimensions afe2 um? X 980 um. Additional silver

A =[9.3,9.6], and initial conditionx;(r = 0) = 0 for all ;. paint strips of43 wm and 100 wm in width are attached to
The memories are manifest in the plateaus (more pronouncetie sample, centered at distances 13% and 58% between the
for N = 10 than for N = 2) when thec; have values with probe contacts, respectively. The curves are offset for clarity,
fractional part of 0.3 and 0.6. Only one memory is retained atand averaged 200 times to reduce nois€.= 50 K, and

long times. Er = 47 mV/cm.
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different four-pulse sequences and observed that the volt- 60
age response at the end of each pulse had a negative slope 40
(indicating the retention of a memory) 85% and a positive

i Il | |

slope only 5% of the time. Thus, multiple memories are 2 Ikl 0 AT A (e "l

observed in experiments as well as simulations. o1 R mie il “H

To understand why the memories form, consider the -20 LI e Nkl ‘ l
“nailed” case of Fig. 2. Initially, each impulse causes -40 ‘

every x; to increment by the same amount, so that only i
the spring near the nail stretches. As time progresses, this

spring stretches more and more, until the force it exerts
becomes large enough to keep the first particle from going 1
into the next well under application of;, the impulse ;
with the smaller fractional part. (At this point, the spring 0
force is insufficient to change the action4f, the impulse
with the larger fractional part.) The second spring then | o
starts to stretch, which, on the next iteration, gives just 1o 200 - 400
enough added force to restore the first particle to its initial

motion forbothimpuls_es. So novv_thefirstspring stretchesg g 4. Snapshots of curvature; versus position; of
on alternate applications of the impulde, and the total a one-dimensional chain of length = 400 with periodic
spring force on particle 1 increments alternately by  boundary conditions at (a) = 0 and (b)7 = 1200000. (The
and—k. Thereforeg, oscillates around the memory value fixed point is reached at ~ 9300000.) ~ Parameter values
A,, leading to a plateau on the plot of Fig. 2. Eventually,2€4 = [1.1.1.5.1.7], k = 0.001. 'The dashed line in (b) is

L : 'the configuration obtained using Eqg. (4) with the same initial
the second spring is stretched to the point that the secong)ngitions, demonstrating that this linear diffusion equation

particle also hangs up at the impulge. This, in turn,  captures accurately the large scale evolution of the system.

starts the stretching of the third spring, etc. A memory for

A\ is created whenever the local curvature just cancels the

fractional part ofA;. A similar analysis holds for all the

other impulsed, that are applied. As time progresses, theconditions investigated. Using the nature of the nonlin-

¢’s get stuck at all the different possible memory values. earity in Eq. (2) together with the fact thiat — int(z)| =
Another way to understand why the curvatures stick att for all z, one can obtain a rigorous analytic bound

the values ofA; is to note that whern; passes through on this difference that grows as Idg9, whereL is the

a memory value, then the right hand side of Eq. (2)system’s linear extent [11], which is sufficient to in-

changes discontinuously, and in particular can change sigsure the applicability of the memory duration estimates

if the neighboringc’s have the appropriate values. If this given below.

happens, then; oscillates with amplitude: &, and sticks Of course, neither of the regions just discussed pro-
at the memory value [10]. This sticking can take the formduces the memory effects. The memories come from an
of either a fixed point or a cycle in the localvalues. intermediate region involving variations in much larger

For k — 0, the dynamics separates into three regimesthan k but smaller than unity. Figure 2 shows that, on
The smallest motions are th@(k) back-and-forth motions this intermediate scale, all the’s show a very simple
at the memory values, which lead to minute serrations irbehavior. They are either (1) stuck at one of the mem-
the plateaus that are not visible on the scale of our figuresry values, or (2) between memory values, with the
The largest motions, involving changes dn which are  varying linearly in time. This sequence of stepwise linear
larger than of order unity, and changesnwhich are motions progressively reduces the variation in the discrete
much larger tharl /k, are described by a linear discrete curvature ofc;. Thus, the intermediate and large scale

diffusion equation motions ofc; can be described as different kinds of diffu-
sive smoothing.
ci(r+ 1) —¢i(r) =k Z [¢i(r) —¢;(n)], (8) To characterize how the memory durations depend
i(nn) on system parameters, first consider the case when the

obtained by linearizing the int functions in Eq. (2). Fig. 4, number of memories = 1. The onset timery,s IS
which shows snapshots of configurations at two differ-determined by the condition that theurvature of the
ent times, demonstrates the accuracy of the linearizedurvature V2c is ~ 1. This condition follows because
equation in reproducing the evolution on large scalesthe ¢’s stick only when the discontinuity in the integer
Numerically, the maximum deviation between the solu-function is large enough to cause the right hand side (rhs)
tions to Egs. (2) and (4) for identical initial conditions, of Eq. (2) to change sign. For multiple memories, we
sup , le;j(7) — ¢;(7)l, is less than unity for all system sum the rhs of Eq. (2) over the terms in the cycle and
sizes, parameter values, boundary conditions, and initialote that the discontinuity occurs in only oneMfterms
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in the sum, leading to the conditioi’c ~ 1/M. For that physical embodiments exist that could be made into
any M, the transient memories disappear whenrdoege  useful devices.

of curvatures becomes too smalk = cpax — Cmin ~ 1. We thank S.E. Brown, P.B. Littlewood, M.L.
To relate the onset and forgetting times to these conditionBovinelli, and R. Thorne for fruitful discussions. This
on the curvatures, we use the linearized map Eq. (4work was supported in part by the MRSEC program of

whose evolution obeys (when> 1/k) the National Science Foundation under Award No. DMR-
s s 9400379. A.L. acknowledges support by an AT&T
cj(r) = ellic(q,m = 0)e K7, (5)  Graduate Fellowship.
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where ¢(¢q,7 = 0) is the spatial Fourier transform of
the initial conditionc;(r = 0). For the random initial
conditions forc shown in Fig. 3,V?c is dominated by
g ~ k7 and the onset timey,: ~ coM/k, wherec is

a typical value ofc(g, 7 = 0), independent of the linear therein
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