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We report short-term memory formation in a nonlinear dynamical system with many degrees
freedom. The system “remembers” a sequence of impulses for a transient period, but it coarsen
eventually “forgets” nearly all of them. The memory duration increases as the number of deg
of freedom in the system increases. We demonstrate the existence of these transient memorie
laboratory experiment. [S0031-9007(97)03273-0]
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We present a deterministic nonlinear dynamical syste
with many degrees of freedom which self-organize
to store memories, in that a configuration-depende
quantity “learns” preselected values. The system,
simple discretized diffusion equation, encodes multip
memories during an extended transient period, but,
the limit of long times, retains no more than two o
them. This system thus displays a mechanism by whi
memories are forgotten as well as learned.

We demonstrate: (1) Short-term memories are exhi
ited by a system with two degrees of freedomN ­ 2, and
become more pronounced asN is increased. (2) The in-
terval in which multiple memories are encoded typicall
grows as the square of the system’s linear extent. (
Many features of the dynamics, including their duration
can be understood analytically. (4) The mechanism is r
bust and is manifest in experiments on a sliding charg
density wave solid.

Consider a system of coupled maps

xjst 1 1d ­ xjstd
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fxistd 2 xjstdg 1 s1 2 Atd
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(1)

wherei, j are the particle indices, the sum is over neare
neighbors,t is the time index, and intfzg is the largest
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integer less than or equal toz. These equations describe
the evolution of the positionsxj of N particles in a
deep periodic potential, with nearest neighbor particle
connected by springs of spring constantk ø 1, in the
presence of force impulsess1 2 Atd. They describe
the dynamics of sliding charge-density waves (CDW’s
[1–3], and are closely related to models of a variet
of dynamical systems [4]. The one-dimensional,t-
independent version of this systemsAt ­ Ad has been
studied previously [2,5] (see also Ref. [3]). Here, w
considerA’s which repeatedly cycle throughM different
values.

The self-organization that occurs as these maps evo
is manifest in the discrete curvature variables [5],cjstd ­
k

P
isnnd fxistd 2 xjstdg, which obey

cjst 1 1d 2 cjstd ­ k
X

isnnd
hintfcistd 1 s1 2 Atdg

2 intfcjstd 1 s1 2 Atdgj .

(2)

Figure 1 shows normalized histograms of fracscd ­
c 2 intscd for a two-dimensional system withM ­
5, periodic boundary conditions, and a random initia
configuration of x’s. Memory encoding is shown by
the accumulation ofc’s with fracscd ­ fracsAtd. For a
© 1997 The American Physical Society 3983
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FIG. 1. Memory formation of Eq. (1) in a two-dimensiona
100 3 100 system with periodic boundary conditions,k ­
0.0001, initial condition ofx’s chosen randomly from the inter-
val [0, 1 000 000], andM ­ 5 sA ­ f0.1, 0.35, 0.5, 0.75, 0.92gd.
P is the proportion ofc’s with fractional parts fracscd within
a bin of width 0.002. For clarity, successive curves are offs
vertically. The lower panel illustrates the short-term accum
lation of c’s at each value ofA; the upper panel demonstrate
that at long times only two peaks persist.

while all M memories are encoded to a similar degre
eventually all are forgotten except for two values ofA [6].
No evolution occurs after the last trace, a fixed point
the map (2).

Figure 2 shows the curvature variablescjstd versus
time t for one-dimensional chains with one free and on
fixed end:

x0std ­ 0; xN11std ­ xN std for all t . (3)

During the evolution, eachcj sticks at values correspond
ing to eachAt. This tendency is more pronounced fo

FIG. 2 Plot of curvaturescjstd versust for N-particle chains
with fixed-end boundary conditions Eq. (3),k ­ 0.001 and
A ­ f9.3, 9.6g, and initial conditionxjst ­ 0d ­ 0 for all j.
The memories are manifest in the plateaus (more pronoun
for N ­ 10 than for N ­ 2) when thecj have values with
fractional part of 0.3 and 0.6. Only one memory is retained
long times.
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N ­ 10 than for N ­ 2, indicating that larger systems
encode transient memories more effectively. At the fixed
point, only one memory (rather than two as in the mode
with periodic boundary conditions) is encoded.

In CDW experiments, memory encoding is manifest as
synchronization of the response to a repeated train of driv
ing pulses so thatVyI (V ­ voltage,I ­ CDW current,
which is proportional to the CDW velocityyCDW ) de-
creases just as each pulse ends. The correspondence
tweenVyI and thec’s is discussed in detail in Refs. [2,3].
Heuristically, it follows becausexjstd can be thought of
as the position of particlej after pulset, and the int
functions in Eqs. (1) arise because after each pulse e
ery particle falls into the nearest potential minimum. The
memory values are at the discontinuities of the int func-
tions, which for the highly overdamped dynamics relevan
to CDW’s [1] means that many particles are at potentia
maxima at the end of a pulse. Since particles mountin
the potential go slower than those descending it (again
implied by overdamped dynamics), when many particles
havec’s on memory values, then a preponderance of par
ticles are at potential maxima, which in turn implies that
the ratioyCDW yV is increasing at the end of each pulse.
Singlememory retention using identical pulses has been
seen previously [7,8]. Here we reportmultiple mem-
ory encoding [9]. Figure 3 shows the successful train
ing of a sample using five different four-pulse sequence
(current pulses). For this sample, we investigated 25

FIG. 3. Trained voltage response curves of NbSe3 for five
different four-pulse sequences. The evidence for multiple
memory encoding is the decreasing magnitude of the voltag
at the end of each pulse. (Note the two pulses have opposi
signs. The voltage response for pulses 3 and 4 are not shown
The drive is a sequence of four current pulses with magnitude
fI , 2I , I , 2Ig and durations 2.95, 2.05, 1.75, and2.75 ms. The
drive magnitudeI, is 20.76, 21.16, 21.55, 21.94, and22.33 mA
for curvesA, B, C, D, andE, respectively. Training consisted
of over one million pulse repetitions. Measurements were
performed using a two-wire, silver-paint contact configuration.
Sample dimensions are5.2 mm2 3 980 mm. Additional silver
paint strips of43 mm and 100 mm in width are attached to
the sample, centered at distances 13% and 58% between t
probe contacts, respectively. The curves are offset for clarity
and averaged 200 times to reduce noise.T ­ 50 K, and
ET ­ 47 mVycm.
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different four-pulse sequences and observed that the v
age response at the end of each pulse had a negative s
(indicating the retention of a memory) 85% and a positi
slope only 5% of the time. Thus, multiple memories a
observed in experiments as well as simulations.

To understand why the memories form, consider t
“nailed” case of Fig. 2. Initially, each impulse cause
every xj to increment by the same amount, so that on
the spring near the nail stretches. As time progresses,
spring stretches more and more, until the force it exe
becomes large enough to keep the first particle from go
into the next well under application ofA1, the impulse
with the smaller fractional part. (At this point, the sprin
force is insufficient to change the action ofA2, the impulse
with the larger fractional part.) The second spring the
starts to stretch, which, on the next iteration, gives ju
enough added force to restore the first particle to its init
motion forbothimpulses. So now the first spring stretche
on alternate applications of the impulseA1, and the total
spring force on particle 1 increments alternately by1k
and2k. Therefore,c1 oscillates around the memory valu
A1, leading to a plateau on the plot of Fig. 2. Eventuall
the second spring is stretched to the point that the sec
particle also hangs up at the impulseA1. This, in turn,
starts the stretching of the third spring, etc. A memory f
A1 is created whenever the local curvature just cancels
fractional part ofA1. A similar analysis holds for all the
other impulsesAt that are applied. As time progresses, th
c’s get stuck at all the different possible memory values

Another way to understand why the curvatures stick
the values ofAt is to note that whencj passes through
a memory value, then the right hand side of Eq. (
changes discontinuously, and in particular can change s
if the neighboringc’s have the appropriate values. If thi
happens, thencj oscillates with amplitude~ k, and sticks
at the memory value [10]. This sticking can take the for
of either a fixed point or a cycle in the localc values.

For k ! 0, the dynamics separates into three regime
The smallest motions are theOskd back-and-forth motions
at the memory values, which lead to minute serrations
the plateaus that are not visible on the scale of our figur
The largest motions, involving changes incj which are
larger than of order unity, and changes int which are
much larger than1yk, are described by a linear discret
diffusion equation

c̃jst 1 1d 2 c̃jstd ­ k
X

isnnd
fc̃istd 2 c̃jstdg , (4)

obtained by linearizing the int functions in Eq. (2). Fig. 4
which shows snapshots of configurations at two diffe
ent times, demonstrates the accuracy of the lineariz
equation in reproducing the evolution on large scale
Numerically, the maximum deviation between the sol
tions to Eqs. (2) and (4) for identical initial conditions
supj,t jcjstd 2 c̃jstdj, is less than unity for all system
sizes, parameter values, boundary conditions, and ini
olt-
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FIG. 4. Snapshots of curvaturecj versus positionj of
a one-dimensional chain of lengthL ­ 400 with periodic
boundary conditions at (a)t ­ 0 and (b)t ­ 1 200 000. (The
fixed point is reached att , 9 300 000.) Parameter values
are A ­ f1.1, 1.5, 1.7g, k ­ 0.001. The dashed line in (b) is
the configuration obtained using Eq. (4) with the same init
conditions, demonstrating that this linear diffusion equatio
captures accurately the large scale evolution of the system.

conditions investigated. Using the nature of the nonli
earity in Eq. (2) together with the fact thatjz 2 intszdj #

1 for all z, one can obtain a rigorous analytic boun
on this difference that grows as logsLd, whereL is the
system’s linear extent [11], which is sufficient to in
sure the applicability of the memory duration estimat
given below.

Of course, neither of the regions just discussed p
duces the memory effects. The memories come from
intermediate region involving variations incj much larger
than k but smaller than unity. Figure 2 shows that, o
this intermediate scale, all thecj ’s show a very simple
behavior. They are either (1) stuck at one of the me
ory values, or (2) between memory values, with thecj

varying linearly in time. This sequence of stepwise line
motions progressively reduces the variation in the discr
curvature ofcj. Thus, the intermediate and large sca
motions ofcj can be described as different kinds of diffu
sive smoothing.

To characterize how the memory durations depe
on system parameters, first consider the case when
number of memoriesM ­ 1. The onset timetonset is
determined by the condition that thecurvature of the
curvature =2c is , 1. This condition follows because
the c’s stick only when the discontinuity in the intege
function is large enough to cause the right hand side (r
of Eq. (2) to change sign. For multiple memories, w
sum the rhs of Eq. (2) over theM terms in the cycle and
note that the discontinuity occurs in only one ofM terms
3985
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in the sum, leading to the condition=2c , 1yM. For
any M, the transient memories disappear when therange
of curvatures becomes too small,dc ; cmax 2 cmin , 1.
To relate the onset and forgetting times to these conditio
on the curvatures, we use the linearized map Eq. (
whose evolution obeys (whent ¿ 1yk)

cjstd ­
X
q

ei $q?$jcsq, t ­ 0de2kq2t , (5)

where csq, t ­ 0d is the spatial Fourier transform of
the initial condition cjst ­ 0d. For the random initial
conditions forc shown in Fig. 3,=2c is dominated by
q ,

p
kt and the onset timetonset , c0Myk, wherec0 is

a typical value ofcsq, t ­ 0d, independent of the linear
extentL. At long timesdc is dominated by the longest
wavelength mode, so thattforget , L2

4p2k lnsc0d. Thus,
larger systems remember longer.

The system of Eqs. (2) is deterministically driven to
wards a fixed point. Once this point is reached, it is im
possible to retrieve the short-term memories. However,
is possible to keep the transient memories from decayi
by adding noise to the system [12]. For example, in th
nailed case of Fig. 2, moving the nail slowly but randoml
with time creates the possibility of continuously encodin
new memories. That noise can lead to theretentionof
memories is important for understanding our experimen
Permanently encoded multiple memories are observed,
only in samples of NbSe3 with additional conducting strips
attached to the crystal between the contacts, an arran
ment known to induce noise [13].

Our memory mechanism can be compared to the “Ho
field memory” [14], which is a dynamical system with pa
rameters adjusted so that particular configurations, whi
encode the desired patterns, minimize an energy fun
tional. There, the memory is encoded in the long-tim
dynamics, and there is no intrinsic “forgetting” mecha
nism. Moreover, changing the remembered value requir
nontrivial adjustment of the microscopic couplings of th
model. In the CDW system studied here, the informatio
is encoded in an evolving system, the control param
ter (pulse size) is easily varied in the laboratory, an
the self-organization is exhibited via standard transpo
measurements.

One avenue for further investigation is to charac
terize better the effects of noise, which, as discuss
above, plays an important role in the CDW experiment
We would also like to identify other experimental sys
tems which exhibit this short-term memory. Because th
present model is just a discretized diffusion equation, ha
ing properties which seem quite robust, we are optimis
3986
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that physical embodiments exist that could be made int
useful devices.
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