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Abstract. We propose a hydrodynamic mechanism, based on the Marangoni flow, to describe growth insta-
bilities of liquid-condensed islands in the supercooled liquid-expanded phase of two-dimensional Langmuir
monolayers. This Marangoni instability is intrinsic to Langmuir monolayers and is not controlled by the
expulsion of chemical impurities from the liquid-condensed phase. The hydrodynamic transport of the
insoluble surfactants is shown to overwhelm passive diffusion and to provide a mechanism for fingering
instabilities. The model can explain the observations by Brewster-angle microscopy of ramified liquid-
condensed islands in monolayers that do not contain the fluorescent dye impurities, which are normally
believed to be responsible for Langmuir-film growth instabilities.

PACS. 05.70.Np Interface and surface thermodynamics – 68.18.Jk Phase transitions – 47.20.Dr Surface-
tension-driven instability

1 Introduction

The phase diagram of two-dimensional (2D) Langmuir
Monolayers (LMs) of amphiphilic molecules exhibits a va-
riety of phases that are the 2D counterparts of the three-
dimensional (3D) solid, liquid-crystalline, liquid, and gas
states of matter [1]. This would naturally suggest that
the characteristic non-equilibrium growth morphologies of
3D materials, such as dendrites and fingering instabili-
ties, have their analogs in LMs. Indeed, islands of 2D
“liquid-condensed” (LC) materials growing in a super-
cooled “liquid-expanded” (LE) matrix show fingering in-
stabilities that are very similar to those observed in bulk
materials [2–4]. Fingering morphologies of 3D materials
are due either to the production of latent heat at the mov-
ing interface or to the expulsion of chemical impurities
from the solid phase at the interface. Diffusion of either
the excess heat or the excess impurities away from the
interface proceeds more efficiently for a modulated inter-
face (the “Mullins-Sekerka” instability [5]). In LMs, heat
build-up at the LC/LE interface can be ruled out, since
the monolayer rests on a large body of water that acts
as an isothermal reservoir. On the other hand, studies of
the morphology of growing LC islands are normally based
on fluorescence-microscopy imaging, a technique that re-
quires the use of extrinsic dyes. It is thus quite reasonable
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to attribute the fingering instabilities to expulsion of the
dye molecules from the LC phase [3–6].

There are, however, several experimental results that
are in conflict with this interpretation. For the case of
LMs of myristic acid, the size of the fingers appears to
be independent of the dye concentration: the instabil-
ity seems to persist down to the lowest achievable dye
concentrations [6]. Moreover, fingering instabilities have
been observed with techniques, such as surface-plasmon
microscopy [7] and Brewster-angle microscopy [8,9] that
do not require addition of any external dyes or other
chemicals. This suggests that there may exist an intrinsic,
impurity-free, instability mechanism for water-supported
LM films that has no counterpart in 3D materials. It is
the aim of this paper to propose that such an intrinsic
growth instability mechanism indeed exists and that it is
produced by the well-known Marangoni Effect [10], i.e.,
by the production of hydrodynamic flow due to surface
tension gradients.

The presence of the Marangoni Effect in supercooled
LE/LC coexistence systems is a necessary consequence
of two factors: i) the dependence of the surface tension
on the surfactant concentration, and ii) the unusually
large difference in area density between the LE and LC
phases (as much as 100% for LMs of fatty acids and phos-
pholipids [1]). This density difference is typically one or-
der of magnitude higher than density differences between
the liquid and solid phases of bulk materials. To sustain
the growth of a LC domain, there thus must be efficient
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Fig. 1. Schematic representation of a linear LE/LC boundary
located at x = 0 for the case of steady-state growth of the LC
phase (x < 0). The LE phase (x > 0) is moving with a uniform
velocity towards the LC phase. The arrows represent the local
Marangoni fluid velocity at various depths and positions. See
the text for a detailed description of the flow profile in the
different regions.

Fig. 2. Growth instabilities and Marangoni flow. The LE re-
gions near protruding tips of a modulated LC/LE interface
have a reduced surface pressure and, below the tip, a reduced
hydrodynamic pressure. The resulting pressure gradients set
up secondary flows feeding the tips and depleting the valleys.

transport of surfactant molecules from the LE to the LC
phase. It is normally assumed that this transport takes
place by surfactant diffusion. The analysis of the next sec-
tion indicates that this is not true: only inside a very nar-
row strip just outside the LE/LC boundary does trans-
port take place by diffusion. Elsewhere, the concentration
gradients produced by the supercooling generate hydro-
dynamic flows through the Marangoni Effect.

The hydrodynamic flow profile generated by the
Marangoni Effect is illustrated in Figure 1 for the case
of a linear LE/LC boundary (the thin diffusion zone is
not shown). The arrows show the local fluid velocity at
various depths and positions as computed from a solution
of the Stokes (NS) equation discussed below. At the air-
water surface (y = 0) on the LE side (x > 0), flow is
along the −x direction. The supply of surfactant material
allows growth of the LC phase at the expense of the LE
phase. The surfactant flow along the plane of the air-water
interface on the LE side drags along fluid of the aqueous
sub-phase immediately below it. At the LE/LC boundary,

the sub-phase flow is subducted downwards since there is
(practically) no flow along the surface at the LC side.

It is now easy to see intuitively why LC domains ex-
hibit growth instabilities. In Figure 2 we show a period-
ically modulated LE/LC boundary. The arrows indicate
the local fluid velocities in the plane of the air-water sur-
face (y = 0) produced by the modulation as computed in
Section 4. The flow lines in the (x-z) plane are focussed to-
wards the tips of the LE/LC boundary (much like ocean
waves focus on headlands extending fom a shore). As a
consequence, excess surfactant material is transported to
the tips of the LE/LC boundary, which increases the am-
plitude of the modulation. This instability mechanism,
which is intrinsic to LMs, has no obvious 3D analog. Hy-
drodynamic flow in 3D supercooled liquid/solid coexis-
tence systems produced by density differences in fact is
believed to stabilize growth interfaces [11].

The outline of the paper is as follows. In Section 2
we describe the non-equilibrium thermodynamics for the
growth of LC domains, taking both diffusive and hydro-
dynamic transport into account. In Section 3 we compute
the flow profiles and the growth front velocity under the
assumption that the viscous losses of the aqueous sub-
phase dominate over surface viscous losses. In Section 4
we perform a time-dependent linear stability analysis, and,
just as for the case of the Mullins-Sekerka instability, flat
growth fronts are found to be unstable for any level of
supercooling (at least for fluid LC phases). In Section 5
we generalize the theory to include surface viscous losses.
Surface viscous effects reduce the growth rate of the in-
stability and shift it to larger wavelengths but they do not
suppress it. The dispersion relation of the unstable modes
in this case turns out to have the same mathematical form
as that of the Mullins-Sekerka theory for diffusive insta-
bilities. We conclude in Section 6 with a brief comparison
of our results with current observations on LMs and with
suggestions for experimental tests to distinguish the diffu-
sive and Marangoni mechanisms for growth instabilities.

2 General formalism

Consider two coexisting LE and LC phases in thermody-
namic equilibrium. We denote by µ0 the chemical poten-
tial of the surfactant molecules (common to both phases),
and by c0 and cs the surfactant concentrations of, respec-
tively, the LE and LC phases. If we impose a small, but
abrupt, decrease in the total area occupied by the LM
(say of order 1-10%) a (transient) increase in surface pres-
sure ensues. Far from the LE/LC boundary, both the sur-
factant concentration and the chemical potential of the
LE phase increases by amounts ∆c, respectively, ∆µ. The
chemical potential µ0 and the concentration cs of the LC
phase change only by a negligible amount. For sufficiently
low levels of supercooling (i.e., for sufficiently small values
of ∆c and ∆µ) we can still invoke the condition of local
thermodynamic equilibrium, even though thermodynamic
parameters will be position dependent. Under these con-
ditions, the chemical potential is a continuous function of
position. The chemical potential must be equal on both
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sides of the LE/LC boundary so the chemical potential of
the LE phase at the LE/LC boundary is “clamped” at µ0.
Away from the boundary, it increases monotonously until
far away it reaches its asymptotic value µ∞ = µ0 + ∆µ.
This chemical potential gradient in the LE phase repre-
sents a thermodynamic “force” that drives a “flux” of
surfactant molecules towards the LE/LC boundary. Sim-
ilarly, the LE surfactant concentration at the boundary
is clamped at c0 and increases monotonously away from
the LC/LE boundary until it reaches the asymptotic value
c∞ = c0 + ∆c.

The coordinate frame that will be used is shown in
Figure 1. The ŷ-axis is along the downward normal to the
air-water interface, the x̂-axis is along the outward nor-
mal to the solid-liquid interface and the ẑ-axis is along
the solid-liquid interface. In the laboratory frame of ref-
erence, the LE/LC boundary moves in the positive-x di-
rection. We will use a moving coordinate frame attached
to the moving boundary. Under steady-state conditions,
the concentration and flow profiles are time independent
in this frame of reference. The surfactant current in the
LE phase is given by

�J(x, z) = c(x, z)�v(x, y = 0, z) − D�∇⊥c(x, z) . (1)

Here, �v is the hydrodynamic flow velocity, c(x, z) the sur-
factant concentration profile, and D the surfactant trans-
lational diffusion coefficient in the plane of the air-water
interface. The first term of equation (1) corresponds to
surfactant material transported by hydrodynamic flow
(advection) and the second term to material transported
by diffusion (the ∇⊥ operator applies only to the x and z
coordinates). Assuming the LC phase to be solid or highly
viscous, we will permit no surface flow in the LC phase.
The normal growth velocity vn of the LE/LC boundary is
then

vn(cs − co) = −Dn̂ · �∇c
∣∣∣
boundary

, (2)

with the n̂ outward normal (i.e., pointing from the LE to
the LC phase).

The flow is not limited to the air-water interface: there
is a sub-phase flow �v extending into the reservoir (which
is assumed to have no bottom). The sub-phase flow exerts
a bulk viscous stress on the LM equal to η∂y�v(x, y = 0, z)
(η is the bulk viscosity). This externally applied stress
must be balanced by a combination of a surface tension
gradient of the form �∇⊥γ =

(
dγ
dc

)
�∇⊥c and of a surface

viscous stress of the form �∇⊥ · ↔
σ (per unit area) with

σi,j = ηs

(
∂ivj(x, y = 0, z) + (i ↔ j)

)
the surface vis-

cous stress tensor. Here, ηs is the surface viscosity [12]
(expressed in units of poise · cm or “surface poise”). Sur-
face viscosity does not have the same dimension as bulk
viscosity and the ratio ζ = ηs/η will turn out to be an
important characteristic length scale. Adding the various
contributions, we obtain

ηs

(
∂2

x + ∂2
z

)
�v(x, y = 0, z) =

=
∣∣∣∣dγ

dc

∣∣∣∣ �∇⊥c(x, z) − η∂y�v(x, y = 0, z) , (3)

with c∞
∣∣∣dγ
dc

∣∣∣ the compressional modulus of the LE state
(this quantity will be assumed to be independent of con-
centration). We can consider equation (3) as a 2D equiv-
alent of the Stokes equation with ηs the 2D viscosity, −γ
a 2D pressure, and the viscous stress η∂y�v(x, y = 0, z)
exerted by the sub-phase as an externally applied force
density. In order to compare the surface and bulk viscous
terms in equation (3), consider a mode of wave vector q.
The ratio of the surface to bulk viscous terms is of or-
der qζ so there are two regimes. Surface viscous losses are
dominant when qζ is large compared to one and bulk vis-
cous terms dominate when qζ is small compared to one.
The transport and instability mechanisms are mathemat-
ically rather different in the two regimes and they will be
treated in Sections 3 and 5, respectively.

The sub-phase flow velocity �v obeys the usual 3D
Stokes Equation for incompressible liquids:

η∆�v = �∇P , (4a)
�∇ · �v = 0 , (4b)

with P the hydrodynamic pressure. Inertial terms have
not been included in equations (3) and (4) (we will see in
Sect. 3.3 that they are indeed negligible).

3 Steady-state growth: bulk viscous regime

If we assume that the characteristic dimensions of both
the LC islands and the growth fingers are large compared
to ζ, we can assume that we are in the bulk viscous regime.
Equation (3) then simplifies to

η∂y�v(x, y = 0, z) ∼=
∣∣∣∣dγ

dc

∣∣∣∣ �∇c(x, z) . (5)

3.1 Steady-state growth velocity

Under steady-state conditions, the LE/LC interface is a
straight line and the concentration profile c(x) depends
only on the x coordinate. The tangential z component of
the flow velocity vanishes, so the surfactant current J is
strictly along the x direction. Under steady-state condi-
tions, mass conservation requires that �∇⊥ · �J = 0, so J
must be a constant, independent of x. The flow velocity
along the x direction and the concentration gradient are
connected by

η∂yvx(x, y = 0) ∼=
∣∣∣∣dγ

dc

∣∣∣∣ dc(x)
dx

, (5′)

while equation (1) becomes

J = c(x)vx(x, y = 0) − D
dc(x)
dx

. (6)

Combining equation (5′) with equation (6) we obtain

J ∼= c(x)vx(x, y = 0) − c∞ξ∂yvx(x, y = 0) . (7)
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We introduced here a second characteristic length scale,

namely ξ = Dη
(
c∞

∣∣dγ
dc

∣∣)−1

. We will see that ξ de-
scribes the cross-over length between advective and dif-
fusive transport: transport is advective when the flow ve-
locity varies over length scales large compared to ξ, and
diffusive in the opposite case.

Let −U be the surface flow velocity (along the
negative-x direction) in the laboratory frame far from the
boundary and let Vs be the steady-state growth veloc-
ity of the LE/LC boundary. Far from the boundary, the
surfactant concentration is equal to c∞ so the surfactant
current far from the boundary must equal J = −Uc∞ (see
Eq. (7)). At the LE/LC boundary, on the other hand, the
current of surfactant molecules must equal −(cs − co)Vs

because of mass conservation. Since J is a constant, we
can equate these two quantities, which provides a relation
between the interface growth velocity and the surface flow
velocity in the laboratory frame:

Vs =
c∞

cs − co
U . (8)

The (asymptotic) surface flow velocity in the reference
frame moving with the LE/LC boundary, will be denoted
by −V with V = U + Vs. Using equation (8), one finds
that V ≈ (cs/c∞)Vs for ∆c/c∞ � 1. The hydrodynamic
flow velocity just below the LC phase (with x < 0) must
equal −Vs while the surface flow velocity just below the
LE phase must decrease from −V at infinity to −Vs near
the boundary.

It follows from the conservation law equation (7) that
this spatial variation of the surface flow velocity requires a
compensating diffusive contribution from the mass trans-
port of surfactant molecules. Comparing the diffusive and
advective currents in equation (7), it follows that the
width of this “diffusion zone” is of the order of the char-
acteristic length scale ξ. This must be compared with
Mullins-Sekerka–type theories [13], where the width of the
diffusion zone surrounding a growth front depends on the
growth velocity Vs as D/Vs, which diverges when the level
of supercooling, and hence of Vs, goes to zero. Flow-driven
growth supersedes diffusive growth when D/Vs � ξ. As
we will discuss in the last section, for typical LMs, ξ is a
molecular length scale while D/Vs is of order 0.1 µm. As
a consequence, flow-driven transport dominates diffusion-
driven transport for impurity-free LMs.

We can use equation (7) to obtain a relationship be-
tween the asymptotic flow velocity U and the degree of
supercooling ∆c. The asymptotic surface current of sur-
factant molecules in the advective zone is c∞V . The sur-
factant current in the diffusive zone is of the order of
c∞Vs + D ∆c

ξ , as follows from the previous discussion.
Equating the two, and assuming that ∆c � c∞, gives

U ∼= ∆c

η

∣∣∣∣dγ

dc

∣∣∣∣ . (9)

This is curious because according to equation (9) U , and
hence the growth velocity Vs, do not depend on the surfac-
tant diffusion constant, even though diffusion is the dom-
inant transport mode right at the LE/LC interface!

3.2 Flow and concentration profiles

To check whether equation (9) is really true, we must ex-
plicitly solve the 3D Stokes equation (Eq. (4)) for the flow
velocity �v(x, y, z) with the appropriate boundary condi-
tions. Outside the diffusive boundary layer, the surface
flow velocity vx(x, y = 0) of the LE phase (x > 0) is con-
stantly equal to −V so

vx(x, y = 0) = −V (x > 0) . (10a)

This condition amounts to assuming a uniform surfactant
concentration in the LE phase equal to c∞ (see Eq. (7)).
The second boundary condition is provided by the fact
that there is no flow in the LC phase (y = 0, x < 0).
Since we are in a coordinate frame moving with the LE/LC
boundary, this demands

vx(x, y = 0) = −Vs(x < 0) . (10b)

The third boundary condition is that flow in the direction
normal to the LM is not permitted:

vy(x, y = 0) = 0 . (10c)

By substitution, it can be checked that the following ex-
pressions are solutions of equation (4) in the moving frame
that fulfils the prescribed boundary conditions:

P = Patm +
2
π

ηUy

x2 + y2
, (11a)

�v =
(
− (U+2Vs)

2
− U

π
arctan(x/y) +

Uxy

π(x2+y2)

)
x̂

+
Uy2

π(x2 + y2)
ŷ . (11b)

The flow lines in the laboratory frame are sketched in
Figure 1, with the length of the arrows roughly propor-
tional to the local velocity. To the right of the LC/LE
boundary, and for small depths y, the flow velocity is ap-
proximately parallel to the surface and equal to −U . It
gradually bends down as one gets closer to the bound-
ary. For x < 0 and small y (i.e. below the LC phase) the
magnitude of the flow velocity is close to zero. There is
a mathematical singularity at the LC/LE boundary line
x = y = 0. For instance, the surface shear rate γ̇ = ∂yvx

at y = 0,

∂yvx(x, y = 0) =
2U

π
x−1 , (12)

diverges at the LE/LC boundary (x = 0). Similarly,
the hydrodynamic pressure P (x = 0, y) right below the
LE/LC boundary diverges as 1/y. At greater depths y,
we encounter a wedge-shaped region in the flow profile
with a vertex at the LE/LC boundary and opening an-
gle of order π/2 (see Fig. 1). Inside this wedge, the flow
vectors develop a large downwards component, which is
required to accommodate the subduction of the volume
flow imposed by the stagnant LC phase. On the far left
below the LC phase (x � 0), the flow velocity increases



R. Bruinsma et al.: Flow-controlled growth in Langmuir monolayers 195

linearly with depths starting from zero, gradually rotating
downward when we enter the wedge region.

The surfactant flow velocity U (in the laboratory
frame) can be calculated by integrating both sides of equa-
tion (5′) from the LE/LC boundary to infinity:

η

∫ L

ξ

dx∂yvx(x, y = 0) =
∣∣∣∣dγ

dc

∣∣∣∣ ∆c . (13)

The lower and upper bounds of the integral are, respec-
tively, ξ (the width of the diffusive zone) and the system
size L. Using equation (12) in equation (13) yields

U =
π

2
∆c

η

∣∣∣∣dγ

dc

∣∣∣∣ 1
ln(L/ξ)

. (14)

The growth velocity actually does depend on the diffusion
constant (through ξ, see Eq. (7)). The appearance of a
logarithmic term is typical for two-dimensional “Laplace-
type” problems but the actual effect is limited (if we take
ξ to be a molecular length and L to be the size of a typical
growing LC island (50 µm) then ln(L/ξ) is less than ten).

We can use equation (5′), with equations (12) and (14),
to obtain the position dependence of the surfactant con-
centration (neglected so far). To first order in the dimen-
sionless super-saturation ∆c/c∞, we find

c(x) = c∞ − ∆c
ln(L/x)
ln(L/ξ)

. (15)

There is thus a very gradual concentration drop of or-
der ∆c inside the LE phase. Using equation (15) in equa-
tion (6), we find that for x large compared to ξ, we can
neglect the diffusive contribution due to the surfactant
transport: the Marangoni Effect is the dominant trans-
port mechanism.

3.3 Inertial effects

So far inertial effects have been neglected. To include
them, the Stokes equation (Eq. (4a)) must be generalized
to

−ρVs∂x�v = η∆�v − �∇P , (16)

with ρ the density of the subphase. Using equation (11b)
in equation (16), we find that the inertial term is negligi-
ble compared to the viscous term provided the Reynolds
Number Re(L) = ρVs

η L is smaller than unity. We shall see
in Section 6 that this is the case for typical LMs if we use
for L the typical size of a LC island.

4 Bulk viscous regime: linear stability analysis

In this section, we examine the stability of the steady-
state growth front against an infinitesimally small, pe-
riodic displacement of the interface boundary: h(z, t) =
hq(t) cos(qz). Such a modulation perturbs the steady-state

hydrodynamic flow profile and creates secondary hydro-
dynamic flows. If the amplitude hq(t) of the modulation
increases with time, then the steady-state profile is unsta-
ble. We will first compute the secondary flow profile in a
small-q perturbation expansion.

4.1 Secondary flows

The perturbed flow profile in the q = 0 limit is the un-
perturbed profile translated over a distance hq=0(t) along
the x axis. Based on this argument, a natural set of “trial
functions” for the perturbed pressure, flow, and concen-
tration profiles is obtained by differentiating with respect
to x the steady-state profiles given by equations (11a),
(11b) and (15) and multiplying the result by h(z, t):

δ�v0(x, y, z, t) ≈ −hq(t) cos(qz) ∂x�vh=0(x, y) , (17a)

δP0(x, y, z, t) = −hq(t) cos(qz) ∂xPh=0(x, y) , (17b)

δc0(x, z, t) = −hq(t) cos(qz)
dch=0(x)

dx
(17c)

(the subscript “0” indicates a correction to zeroth order
in q for a certain quantity while the subscript “h = 0”
indicates the steady-state profile of that quantity). If we
use the steady-state surfactant concentration profiles of
equation (15) in equation (17c), we find

δc0(x, z, t) = −∆c
hq(t)

x ln(L/ξ)
cos(qz) , (18)

with L the system size and with ξ the cross-over length
between advective and diffusive transport. At a fixed dis-
tance x from the boundary, δc0 oscillates along the z
axis with an amplitude proportional to ∆c. The phase
of the concentration modulation is chosen such that the
concentration opposite to the “inlets” of the modulated
boundary is higher than the one opposite the “tips” (see
Fig. 2). These concentration oscillations must create trans-
verse surface-tension gradients (i.e. directed along the
boundary). The surface tension ahead of a tip is increased
whereas the surface tension ahead of an inlet is decreased.
These secondary surface tension gradients generate sec-
ondary Marangoni flow along the interface directed from
the inlets towards the tips. These secondary flows carry
additional surfactant molecules towards the tips.

Note that equation (17) only gives secondary flow in
the direction normal to the boundary. To compute the
secondary Marangoni flow along the boundary, we use
the concentration profile given by equation (18). We thus
look for secondary corrections of the form δ�v = δ�v0 + δ�v1;
δP = δP0 + δP1, where the subscript “1” indicates a cor-
rection to first order in q. Inserting this expansion in the
bulk and surface Stokes equations (Eqs. (2, 4a) and (4b),
respectively), one finds

δP1 = δ�v1x
= δ�v1y

= 0 , (19a)

η∆δ�v1z
= hq(t)q sin(qz) ∂xPh=0(x, y) . (19b)
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Note that equations (19) have the form of a Stokes equa-
tion with an oscillatory pressure gradient along the z di-
rection. Before solving equation (19b), we first have to
specify the boundary conditions. The first one requires
the balance between the viscous stress applied by the sub-
phase to the LE layer and the surface tension gradient (see
Eq. (3)):

η∂yδv1z
(x, y = 0, z) =

∣∣∣∣dγ

dc

∣∣∣∣ ∂zδc0(x, z) , x > 0 . (20)

Using equation (17c) in equation (20), we obtain for x > 0

η∂yδv1z
(x, y = 0, z) =

q

∣∣∣∣∂γ

∂c

∣∣∣∣ hq(t) sin(qz)
dch=0(x)

dx
, x > 0 . (21)

For y = 0 and x < 0, δv1z
(x, y = 0, z) = 0 is zero since

the LC layer moves rigidly with a velocity −Vs along the
−x direction.

The second boundary condition is provided by the re-
quirement that the surface flow at the LE/LC growth front
is directed along the normal to the interface in the (x, z)
plane. The solution of equation (19b), which satisfies both
boundary conditions is

δv1z
(x, y, z) = (vx(x, y)h=0 + Vs) q sin(qz)hq(t) , (22)

with vx(x, y)h=0 the x component of the steady-state ve-
locity profile (Eq. (11b)). This expression can be checked
(to first order in q) by substituting equation (22) into
equation (19b) and using equation (4a). It is also straight-
forward to see that the first boundary condition for x > 0
is obeyed by substituting equation (22) into equation (21),
and using equation (5′) for the steady-state profile. Fi-
nally, we can verify that the second boundary condition is
correctly taken into account by considering the secondary
flow profile at the surface:

δ�v1(x, y = 0) ≈ −Uq sin(qz)hq(t)ẑ . (23)

This surface flow profile can be obtained more simply by
rotating the steady-state surface flow −Ux̂ over an angle
δθ(z) ≈ q sin(qz)hq(t). This rotation directs the flow to be
along the normal to the modulated LE/LC boundary, as is
intuitively reasonable. Finally, it is clear that the condition
of mass conservation for surfactant molecules is obeyed
since �∇⊥ · δ�v1

∣∣
y=0

= 0, provided terms proportional to q2

are neglected.
The small-q expansion breaks down when qx is much

larger than unity. Indeed, secondary surface flows gener-
ated by a surface modulation of wave vector q for large x
must decay exponentially as e−qx because of the “Lapla-
cian” nature of the problem. A reasonable interpolation
formula for the surface flow velocity along the z-direction,
covering both the small- and large-q regimes, is

δv1z
(x, y = 0) ≈ −Uqhq(t) sin(qz)e−qx . (24)

We will use this expression in the following.

4.2 Gibbs-Thompson effect

The instability mechanism discussed in the previous sec-
tion competes with the LE/LC line tension, which has a
stabilizing effect. According to the Gibbs-Thompson re-
lation [14], the surfactant chemical potential at a curved
LE/LC boundary is altered:

δµ = − τ

cs − co
κ , (25)

with τ the LE/LC line-tension, κ the curvature of the
LE/LC boundary line, and cs − co the surfactant concen-
tration difference between the LE and LC phases. The
corresponding change in the surfactant concentration is
δc = (∂µ/∂c)−1

c=co
δµ. The curvature of the growth front

increases the chemical potential at the tips (κ < 0) and
decreases it at the inlets (κ > 0), so the modulation of the
chemical potential is out of phase with the concentration
modulation δc0. We can include this effect by replacing ∆c
in equation (14) by ∆c−δc giving the following expression
for the surface flow velocity near a modulated boundary:

UGT(z) = U
(
1 + ξcκ(z)

)
. (26a)

The capillary length ξ0 is here defined as

ξc = τ/
(
∆c(cs − co)(∂µ/∂c)

)
. (26b)

According to equation (26a), extra surfactant material is
deposited in the inlets. The Gibbs-Thompson effect thus
counteracts the destabilizing influence of the secondary
flows described above.

4.3 Growth rate

We now have available the ingredients required to compute
the mode dispersion of the growth rate of LE/LC inter-
facial instabilities in the bulk regime. Consider a straight
line, denoted by LL, parallel to the x axis and originat-
ing from a point of the LE/LC boundary located halfway
between a maximum (z = 0) and a minimum (z = π/q)
of the modulated growth front (see Fig. 2). By symmetry,
and also because of surfactant mass conservation, half of
the excess surfactant material for the growth of the tip
centered at z = 0 must come from secondary flows cross-
ing the LL line along the negative z direction. Let I1(q)
be the surface current of surfactant material crossing LL.
We can use equation (24) to obtain I1(q):

I1(q) = c0

∫ ∞

ξ

Uqhq(t) sin(π/2) e−qxdx = c0Uhq(t) .

(27a)

On the other hand, the total surfactant current IT(q) re-
quired to maintain the growth of the LE/LC boundary
modulation in the interval [z = 0, z = π/2q] is equal to

IT(q) = cs

∫ π/2q

0

(
dhq(z, t)

dt

)
dz . (27b)
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Since the curvature κ(z) of the interface is negative over
the interval [z = 0, z = π/2q] the Gibbs-Thompson effect
contributes a term IGT(q) leaving the tip:

IGT(q) = c0Uξc

∫ π/2q

0

κ(z)dz . (27c)

Mass conservation requires

IT(q) = I1(q) + IGT(q) . (28)

Assuming that the periodic modulation of the growth
front h(z, t) = hq(t) cos(qz) depends exponentially on time
with a growth rate ωq,

h(z, t) = hq eωqt cos qz , (29)

we find for the curvature κ(z, t) = ∂2
zh(z, t):

κ(z, t) = −q2hq eωqt cos qz . (30)

Using equation (30) in equations (27-28), we find the fol-
lowing dispersion relation for the growth rate ωq of peri-
odic interface modulations in the bulk viscous regime:

ωq ≈ c0
cs

Uq(1 − qξc) . (31)

The dispersion relation is a non-monotonic function of
q with a maximum at q∗ = 1/2ξc, the fastest-growing un-
stable mode. The dispersion relation contains both linear
and quadratic terms in q. This is in contrast to the mode
dispersion of the Mullins-Sekerka case that only contains
terms that are odd in q (it is of the form ωq = Aq −Bq3).
In principle, the two cases can thus be distinguished on
the basis of a measurement of the general form of the dis-
persion relation.

5 Surface viscous regime

In the preceding analysis, we did not include the surface
viscous losses described by the left-hand side of equa-
tion (3). Bulk viscous losses dominate over surface viscous
losses only if qζ is less than one (recall that ζ = ηs/η).
This means that if ζ is larger than the capillary length
ξc, then the dispersion relation equation (31) applies only
for a limited range of smaller q values (less than 1/ζ). In
this section, we will investigate the opposite case where
surface viscous losses dominate.

In this regime, the surface flow profile is determined
by the solution of a purely 2D Stokes equation:

ηs

(
∂2

x + ∂2
z

)
�v(x, z) ≈ |dγ/dc| �∇c(x, z), (32)

neglecting the viscous stress exerted by the sub-phase (see
Eq. (3)). As before, we first look for steady-state solutions
of equation (32).

5.1 Steady state

The steady-state surface flow velocity vss(x) along the −x
direction can be computed following the same strategy
as the one outlined in Section 3. Far to the right of the
LE/LC interface, vss(x = ∞) = −V in the moving frame,
with V to be determined, while for x < 0 we must de-
mand that vss(x) = −Vs. Once vss(x) is known, we can
use equation (32) to derive the steady-state concentration
profile css(x) using the relation

ηs
d2

dx2
v(x) ≈

∣∣∣∣dγ

dc

∣∣∣∣ dc(x)
dx

. (33)

Note that equation (33) now has a first integral:

ηs
d
dx

vss(x) ≈
∣∣∣∣dγ

dc

∣∣∣∣ (
css(x) − c∞

)
. (34)

The integration constant is chosen to satisfy the boundary
condition vss(x = ∞) = −V . Inserting equation (34) in
the conservation law for surfactant molecules equation (6),
we obtain the following non-linear second-order differen-
tial equation for vss(x):

J =
(

c∞+
ηs

|dγ/dc|
dvss(x)

dx

)
vss(x) −

(
Dηs

|dγ/dc|
)

d2vss(x)
dx2

.

(35)

The first term on the right-hand side of equation (35) is
advective and the second term is diffusive. Far from the
LE/LC boundary, transport is dominated by advection:
vss(x = ∞) = −V and J = −V c∞. We will use equa-
tion (35) in linearized form around this asymptotic state:

J ∼= c∞vss(x) − Vsηs

|dγ/dc|
dvss(x)

dx
−

(
Dηs

|dγ/dc|
)

d2vss(x)
dx2

.

(36)

The boundary conditions for the solution of equation (36)
is that at infinity vss(x = ∞) = −V , while at the LE/LC
boundary vss(x = 0) must equal −Vs since that is the ve-
locity of the LC phase. The appropriate solution of equa-
tion (36) is

vss(x) ∼= −V + U e−kx . (37)

The decay constant k, the inverse of the width of the diffu-
sive boundary layer, is obtained by inserting equation (37)
in equation (36), leading to a quadratic equation for k:

c∞ +
Vsηs

|dγ/dc|k −
(

Dηs

|dγ/dc|
)

k2 = 0 . (38)

We can write equation (38) in the simplified form

k2ξ2
s − k(Vs/D)ξ2

s − 1 = 0 , (39)

with solution

k =
Vs/D +

√
(Vs/D)2 + 4/ξ2

s

2
. (40)
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Here, ξs =
√(

Dηs
c∞|dγ/dc|

)
is a characteristic length that

plays for the surface viscous regime a similar role as ξ for
the bulk viscous regime. The concentration profile now
follows from equation (34):

css(x) ∼= c∞ − Uηsk

|dγ/dc| e−kx . (41)

At the LE/LC boundary x = 0, css(x) must equal to c0.
Together with equation (41), this requirement leads to an
expression for the asymptotic flow velocity:

U = | dγ
dc |∆c

ηsk
(42)

U is thus proportional to the width of the diffusive layer.
It follows from equations (40) and (42) that there are

now two distinct regimes:

k ≈ 1/ξs , (D/Vsξs) � 1 ,

k ≈ Vs/D , (D/Vsξs) � 1 .
(43)

If D/Vsξs � 1, then the width 1/k of the diffusive bound-
ary layer is of the order of ξs, independent of both the
supersaturation level ∆c and of Vs, just as for the bulk
case. Although this regime is quite similar to the bulk
case, the asymptotic flow velocity

U ≈ ∆c

√(
D |dγ/dc|

c∞ηs

)
(44)

is sensitively dependent on the value of the translational
diffusion coefficient D of the surfactants. Recall that in
the 3D case U depends on D only logarithmically.

In the second case, D/Vsξs � 1, there is a broad dif-
fusive boundary layer of width D/Vs that depends both
on the supersaturation level ∆c and on the flow velocity
Vs. This width is actually the diffusion length of classi-
cal diffusive growth. Nevertheless, the Marangoni Effect
still plays a role. The asymptotic flow velocity U in this
regime,

U =

√
D |dγ/dc|∆c(cs − co)

ηsc∞
, (45)

still depends sensitively on the compressional modulus of
the LE phase. Note also that U is proportional to the
square root of the supercooling level ∆c, whereas equa-
tion (44) shows a linear dependence.

5.2 Linear stability analysis

To obtain the growth rate of unstable modes, we again
add infinitesimal corrections to the steady-state velocity
and concentration profiles:

�v(�r, t) ∼= vss(x)x̂ + δ�v(�r, t) ,

c(�r, t) ∼= css(x) + δc(�r, t) . (46)

Similarly, we look for perturbations that are periodic along
z (the direction of the boundary):

δvx(x, z, t) = f(x) cos(qz)eωqt ,

δvz(x, z, t) = g(x) sin(qz)eωqt ,

δc(x, z, t) = c(x) cos(qz)eωqt , (47)

with q again the wave vector of the perturbation and ωq

the growth rate. The unknown functions f(x), g(x), and
c(x) must obey the 2D Stokes Equation (Eq. (32)) for the
x and z surface velocity components:

ηs

(
d2

dx2
− q2

)
f =

∣∣∣∣dγ

dc

∣∣∣∣ dc

dx
,

ηs

(
d2

dx2
− q2

)
g = −q

∣∣∣∣dγ

dc

∣∣∣∣ c . (48)

The third equation connecting these three unknown
functions is found by inserting equation (46) in equa-
tion (1):

δ �J ∼= δc(�r, t)vss(x)x̂ + css(x)δ�v(�r, t) − D�∇δc(�r, t) . (49)

For the steady-state profiles computed above (Eqs. (37)
and (39)), this gives

δ �J ∼= δc(�r, t)
(−V + Ue−kx

)
x̂ +

(
c∞ − ∆ce−kx

)
× δ�v(�r, t) − D�∇δc(�r, t) . (50)

Using equation (47) in equation (50), plus the condition
of surfactant conservation �∇ · δ �J = 0, we obtain a third
equation connecting f(x), g(x), and c(x):

(
c∞ − ∆ce−kx

) df(x)
dx

+ ∆cke−kxf(x) + c∞qg(x)

− (
V − Ue−kx

) dc(x)
dx

− Uke−kxc(x)

−D

(
d2

dx2
− q2

)
c(x) ∼= 0 . (51)

In the limit of small x, equation (51) reduces to

c0
df(x)

dx
+ c0qg(x) − Vs

dc(x)
dx

− D

(
d2

dx2
−q2

)
c(x) ∼= 0 .

(52)

Equatios (48) and (51) represent three coupled linear dif-
ferential equations for f(x), g(x), and c(x):

f(x) = f e−λx ,

g(x) = g e−λx ,

c(x) = c e−λx , (53)

with f , g, c, and λ to be determined. After substitution
of equation (53) in equations (48) and (51), we obtain
three linear equations for the three unknown constants f ,
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g, and c. The solubility condition for this set of equations
is ∣∣∣∣∣∣∣∣∣

ηs(λ2 − q2) 0 λ
∣∣∣dγ
dc

∣∣∣
0 ηs(λ2 − q2) q

∣∣∣dγ
dc

∣∣∣
−c∞λ c∞q λV − D(λ2 − q2)

∣∣∣∣∣∣∣∣∣
(54)

or

(λ2 − q2)2
(−λ2 + λ(Vs/D) + q2 + ξ−2

s

)
= 0 . (55)

We retain only the solutions to equation (55) which have
a positive real part for λ to insure that the perturbation
decays to zero far from the LE/LC boundary. There are
two such solutions:

λ1(q) = q,

λ2(q) =
Vs/D+

√
(Vs/D)2+4(ξ−2

s +q2)
2 .

(56)

The first solution λ1(q) = q corresponds to δc = 0 (see
Eq. (48)) and therefore does not contribute to growth in-
stabilities. Using the second solution λ2(q), we can write
the perturbation in the concentration field δc(x) in the
form

δc(x, z, t) = cq cos(qz) e−λ2(q)x eωqt . (57)

We can now again look at the response of the system
to an infinitesimally small, periodic modulation h(z, t) =
hq cos(qz)eωqt of the boundary. The excess surfactant con-
centration δcint(z, t) at the perturbed interface is

δcint(z, t) = css(x = h(z, t)) − css(0) + δc(x = h(z, t), z, t)
∼= ∆ckh(z, t) + δc(x = 0, z, t) . (58)

In the second step, we have used equations (39) and (40)
for the steady-state profile and also used the fact that
h(z, t) is infinitesimal. The growth rate of the perturba-
tion follows from equation (58) and from the boundary
condition for the growth velocity of the boundary given
by equation (2):

(cs − co)∂th(z, t) = D∂x

{
(css(x = h(z, t)) − css(0))

+ δc(x = 0, z, t)
}

. (59)

Using equations (39) and (40) in equation (59), plus the
fact that h(z, t) and δc are infinitesimal yields

(cs − co)ωqhq = −D
(
∆ck2hq + cqλ2(q)

)
. (60)

We need one more relation between hq and δcq. This is
provided by the Gibbs-Thompson relation, equation (25),
which demands that

(∂µ/∂c)c=c0(cint(z, t) − c0) = − τ

cs − co
κ(z, t) . (61)

Inserting equation (58) in equation (61) gives

cq + ∆ckhq = c∞ξcq
2hq , (62)

with

ξc = τ/
(
c∞(cs − co)(∂µ/∂c)

)
(63)

the capillary length. We use here the same notation for the
capillary length as in equation (26) although the definition
is slightly different (it does not depend on the supercooling
level in the present case). Eliminating from equation (60)
the amplitude of the concentration fluctuation through
equation (62) gives the final equation for the growth rate
ωq of perturbations in the surface viscous regime:

(cs − co)ωq = D
(−∆ck2 − c∞ξcq

2λ2(q) + ∆ckλ2(q)
)

,
(64)

or

ωq
∼= D

(cs−co)

(
∆ckq − c∞ξcq

3
)

. (65)

The growth rate of equation (65) is again a non-
monotonous function of q. The dependence on q of ωq is
formally similar to that of the Mullins-Sekerka instability,
even though flow plays an essential role. Equation (65)
can be viewed as a generalization of the Mullins-Sekerka
dispersion relation, with the diffusion length replaced by
the interfacial width k−1.

The dispersion ωq has a maximum at a wave vector q∗
equal to

q∗ ≈
√(

∆c

3c∞

)
kξ−1

c . (66)

The corresponding maximum growth rate is

ωq∗ ∼=
(√

1
3
− 1

3

)
D(∆ck)3/2

(cs − co)(c∞ξc)1/2
. (67)

In the advective limit (see Eq. (43), first case), the wave-
length of the most unstable mode is proportional to the
geometrical mean of the capillary length ξc (a molecular
length) and the width ξs of the boundary layer. In the
diffusive limit (see Eq. (43), second case), this wavelength
is proportional to the geometrical mean of the capillary
length ξc and the diffusion length D/Vs, just as for the
Mullins-Sekerka instability.

6 Conclusion

To interpret the existing experimental data on LMs in
terms of the theory presented above, we must first deter-
mine whether the growth of LC islands is dominated by
viscous dissipation in the sub-phase or by viscous dissipa-
tion at the air-water surface. We thus have to estimate the
cross-over length ζ = ηs/η and compare it with the typ-
ical size of liquid-condensed islands in a supersaturated
liquid-expanded LE phase following mechanical compres-
sion. Accurate measurements of ηs in the LE phase do not
appear to be available, but it can be estimated to be in
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the range 10−6–10−7 g m/s (treating the LE phase as a
layer of thickness 30 Å with a viscosity of 1–10 poise) [14].
The length scale ζ = ηs/η is then of a size comparable
to that of the fingers so we should be in the cross-over
regime between the two cases. The surface viscosity of the
LC mesophases measured by macroscopic means depends
both on the shear rate and the type of surfactant. For oc-
tadecanol, it is of order g m/s [15,16] while for eicosanoic
acid it is of order 10−2–10−3 g m/s [17], which means
that for the (hypothetical) case of a crystalline LC phase
growing out of a fluid LC phase, the surface-viscous regime
should definitely apply. For the estimates below, we will
use the results obtained for the surface viscous regime.

The next point is to verify whether we are in the 2D
advective or in the 2D diffusive regime (see Eq. (43)). Mea-
sured growth velocities Vs are of the order of 100 µm/s
or less, while surfactant diffusion constants D are in the
range of 10−7 cm2/s, yielding a diffusion length D/Vs of
order 0.1 µm. The area compressibility codγ/dc of the LE
phase is of order 10 erg cm−2. This yields a value for

ξs =
√(

Dηs
c∞|dγ/dc|

)
of about 10 Å (using the estimated

surface viscosity of the LE phase) so the ratio D/Vsξs is
of order 100. This would indicate that advection indeed is
the dominant transport mechanism.

As a check, we can compare the predicted value
of the steady-state surface flow velocity using U ≈
∆c

√(
D|dγ/dc|

c∞ηs

)
with the measured ones. Assuming a su-

percooling level ∆c/co of order 0.01, and using our earlier
estimates for the other parameters, we obtain a value for U
of the order of 100 µm/s. Experimental observations find
U to be in the range of 1–10 µm/s, significantly less than
the predicted value. The concentration difference cs − co

between the LE and LC phases is typically of order 2c0,
so it follows from Vs = c∞

cs−co
that the growth velocity Vs

is about 0.5U .
The wave vector q∗ of the most rapidly growing mode

q∗ ≈
√(

∆c
3c∞

)
kξ−1

c should be compared with the mea-

sured finger width of frontal instabilities. The capillary
length ξc = τ/

(
c∞(cs− co)(∂µ/∂c)

)
is a quantity that has

not been directly measured for LMs, but using a value of
10−7 dyne for the LE/LC line tension [18] and assuming
c∂µ/∂c ∼= kBT (as in the gas phase), we get a capillary
length of order 10 Å. Using the above values for k, ξc, and
the supercooling level, we obtain a value for q∗ of order
105 cm−1 and a growth rate ωq∗ of order 102 Hz). Optical
microscopy studies report finger widths of roughly 10 µm
corresponding to a q∗ of order 104 cm−1, i.e. somewhat
less then the predicted value. In view of the roughness of
our estimate of ξc, this is however not too serious. Finally,
it can be checked that inertia effects indeed are negligi-
ble by calculating the Reynolds number Re(L) = ρVsL/η,
with L the characteristic size of an island (100 µm). For
an aqueous sub-phase with ρ of order 1 g/cm3, we obtain a
Reynolds number small compared to unity (of order 10−2).

A number of qualifiers must be added. In the deriva-
tion of the mode dispersion equation (65), we assumed

that the wave number q was larger than k = 1/ξs. This
condition clearly does not hold for the wave number q∗ of
the fastest growing mode and numerical analysis of equa-
tion (51) is required to investigate this regime. Next, our
description of the growth geometry is likely to be seriously
oversimplified. For instance, when several LC islands are
growing simultaneously, they compete for the capture of
the molecules of the supersaturated LE phase. This would
result in a slowing down of the growth rate, which may
explain why the calculated value for U is too high com-
pared with experiment. Finally, electrostatic effects, not
included in the present description, also may play a role
in the development of growth instabilities [19] since dipole-
dipole repulsion stimulates fingering instabilities.
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