
 

Experiment T9  Chemistry 114 

JOULE-THOMSON COEFFICIENT  

Apparatus 

 Before starting this experiment, read the following sections in GNS (7th ed.):  Thermocouples 
(p.607); Cylinders, reducing valves, gas regulators (p.705); and Needle valves (p.706). 

 Our apparatus is very similar to that described in GNS (p.100-101).  You should carefully open 
the black box and remove the thermal insulation to compare our set-up to that in GNS.  Please by very 
careful with the thermocouple probes:  Never move the box by pulling from the probes and do NOT 
bend them. 

Procedure 

  The EMF generated by the differential T-type (Copper-Constantan) thermocouple is 
proportional to the temperature difference across the frit and it is measured with a Keithley-2000 
multimeter, which directly produces a temperature reading that is recorded with the Lab View 
program. (The Voltage-Temperature conversion factor is the Seebeck coefficient mentioned in GNS, 
which is built in the Lab View program).  The Pressure is measured with a digital handheld manometer 
and also recorded with the Lab View program. Press the Power and HOLD buttons simultaneously to 
turn this instrument on and disable the “auto power off” function (An “n” will appear in the middle of 
the screen at which time the HOLD button can be released, and then the power button). 

 The software should be started with the pressure set at zero bars, which would ideally produce 
a temperature reading that is also zero.  If this is not the case, let the software run for a few minutes 
until the temperature reading is stable (+/- 0.01C) and then stop the program and re-start it.  Then 
follow the procedure in GNS, using pressure steps anywhere from 0.1 to 0.5 bars, and do NOT go to 
pressures higher than 5 bars.  

 You will determine the Joule-Thomson coefficients of Nitrogen, Carbon Dioxide, Argon, and 
Helium.  Compare your results to the literature values and suggest possible sources of error in your 
measurements.  Explain the sign and relative magnitudes of the coefficients for the four different gases 
in terms of stored potential energy at high pressure.  Also, calculate the value of μ for these gases at 
298K by using the van der Waals equation presented in GNS, and both Virial Analyses, presented in 
the book and in this handout (below).  Be careful in handling units in calculating the van der Waals μ; 
GNS gives a and b in non-SI units. The Beattie-Bridgeman equation is rarely used and can be omitted. 

 For the CO2 experiment, heating tape should be used over the regulator to avoid freezing of the 
gas (around the metallic part of the regulator ONLY).  Remember to turn the Variac (that controls the 
heating tape) off after you are done with the CO2 experiment, otherwise the Teflon tubing from the gas 
cylinder will melt.  

 Please, turn the digital manometer and the Keithley 2000 off after you are done 
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Virial Analysis 

 The virial equation of state is frequently used to represent the behavior of real gases.  Unlike 
empirical equations of state, such as the van der Waals equation (which is, at best, very approximate) 
and the Beattie-Bridgeman equation (which is now rarely used) which are discussed in GNS, the virial 
equation can be derived from exact statistical mechanical theory. 

 One form of the virial equation is the density series: 

 pV~ /RT = 1  +  B(T)/V~   +  C(T)/V~ 2  +  . . .   , (1) 

where  p  is the pressure, V~   is the molar volume,  T  is the absolute temperature and  R  is the gas 
constant.  The quantities B(T) and C(T)  are, respectively, the second and third virial coefficients and 
are functions of temperature only.  While the constants in the van der Waals equation of state and some 
of the constants in the Beattie-Bridgman equation have some qualitative relationship to intrinsic 
molecular properties of a real gas, the following expression can be derived rigorously by the methods 
of statistical mechanics: 

  (2)   B(T) = 2πNA {1 − exp[−u(r) / kBT]}r2 dr
0

∞

∫

where NA is the Avogadro constant, kB is the Boltzmann constant, and u(r) is the intermolecular pair 
potential energy at an intermolecular separation r. 

[H. Kamerlingh Onnes (1901); J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular  Theory of 
Gases and Liquids, Wiley, New York, (1954); W. J. Moore, Physical Chemistry, 4th ed., Prentice-
Hall, Englewood Cliffs, N.J. (1972), pp.26, 130, 926.] 

An alternative virial equation, the pressure series, is also used: 

 pV~  = RT + B'(T)p + C'(T)p2 + . . .   . (3) 

It is easy to show, by making the substitution 
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In the right-hand side of Eq.(1) and expanding the denominators [i.e., remembering that 1/(+x+...) = 
(1+x+...)], that  B'= B and C'= (C- B2)/RT. 

 An expression for the Joule-Thomson coefficient in terms of the virial coefficients is more 
easily derived from the pressure expansion since 
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  μ = ⎝⎜
⎛

⎠⎟
⎞∂T

∂p  
H

 =  -  
(∂H~/∂p)T

(∂H~/∂T)p
      (4) 

 (∂H~ /∂p)T  =  V~  - T(∂V~ /∂T)p  =  RT/p + B' + C'p - T[R/p + dB'/dT + (dC'/dT)p] + ... 

    =  [B' - T(dB'/dT)] + [C' - T(dC'/dT)]p + ....  (5) 
 
  H~  is also temperature dependent, so we integrate (∂H~ /∂p)T with respect to pressure obtaining 
 
  H~  = H~ o + [B' - T(dB'/dT)]p + [C' - T(dC'/dT)]p2/2 + ... (6)  
 
Where H~ o is the molar enthalpy of the real gas at zero pressure (which is the same as that at the 
standard state of the ideal gas at the standard pressure po).  Eq. (6) can now be differentiated with 
respect to temperature to obtain the heat capacity: 
 
C~ p  = (∂H~ /∂T)p = C~ po + [(dB'/dT) - (dB'/dT) - T(d2B/dT2)]p + ... =  C~ po - T(d2B/dT2)]p + ... (7) 
 
 Substituting into Eq. (4) and substituting from B' and C' to the density coefficients B and C, we 
obtain an expression for the Joule-Thomson coefficient correct to the first power of the pressure 
 

 μ  =  -  
[B - T(dB/dT)] + {[2C - 2B2 - T(dC/dT) + 2TB(dB/dT)]/(RT)}p + ...

C~po - T(d2B/dT2)p + ...
   (8) 
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 Values of B and C for N2, Ar, and CO2 are given in Table 1 below.  Values for other gases can be 
found in J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases and Gas Mixtures (Clarendon 
Press, Oxford, 1980) from which the values in Table 1 have been adapted.  The uncertainties in B are 
of the order of ± 0.5 cm3 mol-1 while the uncertainties in C are at least as large as ± 200 cm6 mol-2. 

 
 

TABLE 1 - Virial Coefficients 

 T/K B/(cm3 mol-1) C/(cm6 mol-2) 
 
 Ar 223.2 -37.8 1800 

  273.2 -22.1 1700 

  323.2 -11.0 1200 

  373.2 -4.2 1000 
 

 N2
 273.2 -10.3 1540 

  298.2 -4.8 1380 

  323.2 -0.3 1280 

  348.2 3.3 1220 

  373.2 6.4 1200 

 
 CO2 273.2 -151 5600 

  298.2 -123 5300 

  323.2 -104 4930 

  348.2 -87 4430 

  373.2 -74 4150 

  
  


