Chemistry 223A

 Homework Assignment \# 2Reading: Callen Chapter 3

Here we derive some basic formal relationships between the thermodynamic variables, and apply them to simple model systems.

1. Callen 3.3-3

A system obeys the equtions

$$
\begin{equation*}
P=-\frac{N U}{N V-2 A V U} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
T=2 C \frac{U^{1 / 2} V^{1 / 2}}{N-2 A U} e^{A U / N} \tag{2}
\end{equation*}
$$

Find the fundamental equation.
Hint: To integrate, let

$$
\begin{equation*}
s=D u^{n} v^{m} e^{-A u} \tag{3}
\end{equation*}
$$

where D, n, and m are constants to be determined.

2. Callen 3.4-3 \& 3.4-4

Two moles of a monoatomic ideal gas are at a temperature of $0^{\circ} \mathrm{C}$ and a volume of 45 liters. The gas is expanded adiabatically $(\nexists Q=0)$ and quasi-statically until its temperature falls to $-50^{\circ} \mathrm{C}$. What are its initial and final pressures and its final volume?

By carrying out the integral $\int P d V$, compute the work done $b y$ the gas. Also compute the initial and final energies, and corroborate that the difference in these energies is the work done.

3. Callen 3.4-5

In a particular engine, a gas is compressed in the initial stroke of the piston. Measurements of the instantaneous temperature, carried out during the compression, reveal that the temperature increases according to

$$
\begin{equation*}
T=\left(\frac{V}{V_{o}}\right)^{\eta} T_{o} \tag{4}
\end{equation*}
$$

where T_{o} and V_{o} are the initial temperature and volume, and η is the a constant. The gas is compressed to the volume V_{1} (where $V_{1}<V_{o}$). Assume the gas to be monatomic ideal, and assume the process to be quasi-static.

- a)Calculate the work W done on the gas.
- b)Calculate the change in energy ΔU of the gas.
- c)Calculate the heat transfer Q to the gas (through the cylinder walls) by using the results of (a) and (b).
- d)Calculate the heat transfer directly by integrating $đ Q=T d S$.
- e)From the result of (c) and (d), for what value of η is $Q=0$? Show that for the value of η the locus traversed coincides with an adiabat (as calculated in Problem 3.4-2)

4. Callen, 3.4-12

Show that μ_{j}, the electrochemical potential of the j th component in a multicomponent simple ideal gas, satisfies

$$
\begin{equation*}
\mu_{j}=R T \ln \left(\frac{N_{j} v_{o}}{V}\right)+f(T) \tag{5}
\end{equation*}
$$

and find the explicit form for $f(T)$.
Show that μ_{j} can be expressed in terms of the "partial pressure" (Problem 3.4-11) and the temperature, T.

5. Callen 3.5-3

Repeat Problem 3.4-3 for CO_{2}, rather than for a monoatomic ideal gas. Assume CO_{2} can be represented by an ideal van der Waals fluid with constants given in Table 3.1.
At what approximate pressure would the term $\left(-a / v^{2}\right)$ in the van der Waals equations of state make a 10% correction to the pressure at room temperature?

6. Callen 3.6-1

The universe is considered by cosmologists to be an expanding electromagnetic cavity containing radiation that now is at a temperature of 2.7 K . What will be the temperature of the radiation when the volume of the universe is twice its present value? Assume the expansion to be isentropic (this being a nonobvious prediction of cosmological model calculations).

7. Callen 3.7-2

A rubber band is stretched by an amount $d L$, at constant T. Calculate the heat transfer $đ Q$ to the rubber band. Also calculate the work done. How are these related and why?

8. Callen 3.9-6

A simple fundamental equation that exhibits some of the qualitative properties of typical crystalline solids is

$$
\begin{equation*}
u=A e^{b\left(v-v_{0}\right)^{2}} s^{4 / 3} e^{s / 3 R} \tag{6}
\end{equation*}
$$

where A, b, and v_{0} are positive constants.

- a)Show that the system satisfies the Nernst theorem.
- b)Show that c_{v} is proportional to T^{3} at low temperature. This is commonly observed (and was explained by P. Debye by a statistical mechanical analysis which will be developed in Chapter 16).
- c)Show that $c_{v} \rightarrow 3 k_{B}$ at high temperatures. This is the "equipartition value", which is observed and which will be demonstrated by statistical mechanics analysis in Chapter 16.
- d)Show that for zero pressure the coefficient of thermal expansion vanishes in this model - a result that is incorrect. Hint: Calculate the value of v at $P=0$.

