Here we briefly review the fundamentals of thermodynamics as discussed in the first two chapters of Callen. There are seven problems in all. Each is worth ten points.

1. **Callen 1.8-5**
The energy of a particular system, of one mole, is given by

\[U = AP^2V \]

where \(A \) is a positive constant with dimensions of inverse pressure. Find the equation of adiabats in the \(PV \) plane.

2. **Callen 1.8-7**
Two moles of a particular single-component system are found to have a dependence of internal energy \(U \) on pressure and volume given by

\[U = APV^2 \]

(for \(N = 2 \)).

Note that doubling the system doubles the volume, energy, and mole number, but leaves the pressure unaltered. Write the complete dependence of \(U \) on \(P,V \), and \(N \) for arbitrary mole number.

3. **Callen 2.2-4 and 2.2-5**
(a) Find the three equations of state for a system with the fundamental equation

\[u = \left(\frac{\theta}{R} \right) s^2 - \left(\frac{R\theta}{v_0^2} \right) v^2 \]

and show that, for this system, \(\mu = -u \).

(b) Express the chemical potential \(\mu \) as a function of temperature \(T \) and pressure \(P \) for this system.
4. Adiabats – one more time. From Callen, 2.2-9

We have seen for a single component ideal gas has adiabats of the form:

\[pV^k = \text{const}, \]

(4)

where \(k \) is some positive, dimensionless constant.

Using this result show that

\[U = \frac{1}{k-1}pV + Nh \left(\frac{pV^k}{N^k} \right), \]

(5)

where \(h(x) \) is an unknown function. You would have to be given more information about this particular material to determine \(h \).

Hint: Convince yourself that \(pV^k \) is a function of only \(S \) (entropy) and \(N \) (number of particles). From the equation of state Eq. 4 you can then determine the fundamental relation Eq. 5 up to the unknown function as shown above.

5. Callen 2.6-4

Two systems with equations of state

\[
\frac{1}{T^{(1)}} = \frac{3}{2} R \frac{N^{(1)}}{U^{(1)}}
\]

(6)

\[
\frac{1}{T^{(2)}} = \frac{5}{2} R \frac{N^{(2)}}{U^{(2)}}
\]

(7)

are separated by a diathermal wall. There respective mole numbers are \(N^{(1)} = 2 \) and \(N^{(2)} = 3 \). The initial temperatures are \(T^{(1)} = 250K \) and \(T^{(2)} = 350K \). What are the values of the internal energies \(U^{(1,2)} \) after equilibrium has been established? What is the equilibrium temperature?

6. Callen 2.8-2

A two-component gaseous system has a fundamental equation of the form

\[
S = AU^{1/3}V^{1/3}N^{1/3} + \frac{BN_1N_2}{N},
\]

(8)

where \(N = N_1 + N_2 \) and where \(A, B \) are positive constants. A closed cylinder of total volume \(2V_0 \) is separated into two equal sub volumes by a rigid diathermal partition permeable only to the first component [i.e. molecules of type (1)]. One mole of the first component, at a temperature \(T_l \) is introduced in the left-hand sub volume, and a mixture of \(1/2 \) mole of each component, at temperature \(T_r \) is introduced into the right sub volume. Find the equilibrium temperature \(T \) and the mole numbers in each volume when the system has come to equilibrium, assuming that \(T_r = 2T_l = 400K \) and that \(37B^2 = 100A^3V_0 \). Neglect the heat capacity of the walls of the container.
7. Preparation for Chapter three – A Generalized Euler Theorem:

In this problem you will examine a purely mathematical issue that will be important to us in the next chapter. Given that a function f has the property:

$$f(\lambda^{p_1}x_1, \ldots, \lambda^{p_n}x_n) = \lambda^m f(x_1, \ldots, x_n) \quad (9)$$

show that

$$\sum_{j=1}^{n} p_j x_j \frac{\partial f}{\partial x_j} = mf(x_1, \ldots, x_n). \quad (10)$$