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ABSTRACT We discuss the dynamics of dilute and semidilute solutions of semirigid chains. The results 
can be applied to analyze recent light scattering experiments from solutions of actin filaments where an 
anomalous scaling of the dynamic structure factor was found. This anomalous scaling is explained as being 
due to anisotropic scaling of characteristic length scales parallel and perpendicular to a filament and leads 
to characteristic frequencies in the system scaling as q8Is log(@. 

I. Introduction 
Dynamic scattering experiments have played an im- 

portant role in elucidating the internal dynamics of flexible 
polymers.lI2 Many observed phenomena are now under- 
stood in terms of the scaling behavior of scattering 
 function^.^ The theory of the dynamics of semiflexible 
polymers is, however, much less developed; in this paper 
we analyze the case of solutions of semiflexible molecules; 
in particular, we analyze recent experiments on actin 
filaments. For this system the scattering dynamics are 
dominated by transverse bending fluctuations which we 
model with a simple Langevin equation. 

Actin is a globular protein with a mass of 43 000 daltons 
with a diameter of 3.5 nm, which plays an important role 
in many processes in the living cell.4 It is present in large 
quantities in many cells where it has important structural 
and locomotive roles. The protein exists in two major 
forms: G-actin, a dilute solution of unassociated molecules, 
and F-actin, an aggregated filamentary structure. It is a 
protein which is easily purified and forms a model system 
whose physical properties have been studied in detail under 
highly idealized conditions. A filament consists of an 
assembly of actin molecules in a double helix structure 
with a pitch of 72 nm. The molecules assemble in the 
presence of ATP via a polar growth mechanism to form 
stable objects with lengths of many tens of microns and 
diameter a of the order of 7 nm. These aggregated 
filaments contain bound ADP which stabilizes the struc- 
ture and thus undergo only slow depolymerization under 
normal conditions. Thus, once polymerized, an individual 
filament can be considered as a stable object on the time 
scales important for dynamic light scattering experiments. 

The configuration freedom and fluctuations of actin 
filaments have been studied with a number of techniques 
including electron microscopy,s fluorescence microsco- 
py,6J*8 and dynamic light s ~ a t t e r i n g . ~ J ~  Information on 
the internal dynamics of filaments can also be extracted 
from detailed rheological measurements.11J2 Electron 
microscopy permits one to study single configurations of 
asingle chain, but it is difficult to obtain extensive statistics 
for quantitative measurements of elastic constants. Flu- 
orescence studies permit one to study the evolution of 
single-chain segments but involve the adsorption of a dye 
which could change the structure of the filament and hence 
its mechanical properties. Recently,I3 detailed quasi- 
elastic light scattering experiments have been performed 
on dilute and semidilute solutions of actin filaments, and 
the results have been analyzed using ideas of dynamic 
scaling in polymer solutions. A particularly striking result 
was that over a large range of times and concentrations 
the intensity-intensity correlation function was shown to 

0024-929~/93/2226-~041$04.00/0 

be a universal function of only the combination q 2 9 ,  rather 
that the two independent variables t and q. This result 
should be contrasted with that found in flexible polymers 
where the correlation function depends on the combination 
tq3 (Zimm model) or tq4 (Rouse model).3 For the longest 
times considered in the experiments, interactions between 
filaments become important and the scattering form 
changes. 

The major result of this paper is that on the time scales 
important for the experiment the dynamic structure factor 
g(q,t) is a function of the combination tq8I3 with, however, 
important logarithmic corrections. Rather surprisingly, 
we find that the system does not exhibit exact scaling; 
however, the effects which destroy scaling turn out to be 
weak. In section I1 of this paper we shall give a qualitative 
argument which leads simply to these results. The 
argument can be turned into an exact calculation, which 
is presented in section 111. In the fourth section of this 
paper we shall give arguments that the dynamic structure 
factor g(q,t) - exp(-q2t1I4) for the longest times in 
experiments when interactions between filaments become 
important. Our theory gives estimates for the bending 
constant of a filament which are consistent with those 
found in microscopy. 

11. Scaling Arguments 
In this section we shall present some simple scaling 

arguments to describe dynamic light scattering from 
individual actin filaments. Microscopy s ~ o w ~ ~ * ~ * ~  that 
F-actin is a semiflexible chain with a persistence length 
5 of some 6 pm; thus for scattering vectors important in 
optical experiments we can locally describe the shape of 
the filament in terms of fluctuations about a straight rod. 
If the mean position of the filament lies along the x axis, 
we shall describe the shape of the filament in terms of two 
independent fluctuations r(s) = (ry(s),rz(s)). For sim- 
plicity, let us consider the scattering from a single filament 
with the scattering vector q perpendicular to the mean 
axis of the filament, q = q%. Such a description neglects 
all compressional and torsional degrees of freedom for a 
chain and is clearly only valid for phenomena occurring 
on length scales small compared to 5 .  

Dynamic light scattering experiments measure the 
dynamic structure factor 

where the sum is over all molecules in the filament a t  
positions r,,,. The decay of this correlation function is due 
to the progressive dephasing of the signal as a function of 
time; for this event to occur, a given protein molecule in 
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the filament should move a distance of order l / q .  For an 
actin filament we can estimate the characteristic time for 
this process as follows: 

The bending elastic energy associated with a deforma- 
tion of the filament is given by14 
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E = KJ(VZr)z 2 ds = iJp4r p r -p271. !P (2 .2 )  

where K is the bending elastic constant which is directly 
related to the persistence length, [ = ( 2 / 3 ) ~ / k ~ T .  The 
typical transverse fluctuations associated with a segment 
of F-actin of length L can be estimated as 

where T is the temperature. Thus we find a natural 
relation between length scales parallel, L, and perpen- 
dicular, 1, to a filament: l2  = ~ B T L ~ / K .  Similarly, we find 
the relation between wave vectors parallel, Q, and per- 
pendicular, q, to the filament: 

Q3 = q2kET/K (2 .4 )  
Such relations, expressing the anisotropic scaling of lengths 
in two different directions, are most generally expressed 
in terms of roughness exponents,15 1 - Lr; for a semiflexible 
chain l= 3 / 2  as we have seen. It is this anomalous scaling 
of lengths parallel and perpendicular to the average axis 
of the filament which leads to the anomalous scaling seen 
in the experiments. 

The dynamics of filament are described by the Langevin 
equation: 

A- - dr(s t )  
at 

JH(s,s’)(-~V~r(s’,t) + aV2r(s’,t) + f ( t ,s ’ ) )  ds’ (2 .5 )  

where s and s’ are two distinct points on the chain, H(s,s’) 
is the Oseen tensor describing the hydrodynamic inter- 
actions between monomers, and f ( t , s )  is a random force 
due to collisions of the solvent molecules with the chain. 
The parameter a = K / t 2  is a Lagrange multiplier which 
ensures the correct crossover between the semiflexible and 
coil regime. 

Because the wavelength of the light used in these 
experiments, X = 0.514 km, is small compared to the 
persistence length f (about 6 km), namely, q[ >> 1,  the 
dynamic correlation function will be only sensitive to 
bending dynamic modes and our result is independent of 
a; however, for technical reasons the calculation is sim- 
plified in the presence of the term in a. From the Langevin 
equation (2 .5 )  we find in this limit that 

iw = H ( Q ) K Q ~  (2.6)  
where w is the frequency and Q the wave vector of a 
disturbance on the filament. The Oseen tensor, H(s,s’), 
decays as l / ls  - s’I for large separations; its Fourier 
transform thus varies as log(Q) for the length scale that 
we are interested in. If we now substitute relation 2.4 for 
Q, we find the scaling for the characteristic frequency R 
associated with transverse fluctuations with scattering 
vector q is 

Q - q 8 / 3 H ( q 2 i 3 E 1 / 3 ) f - 1 / a  (2 .7 )  
Asymptotically, this frequency scales as q8I3 log(qd) (with 
d a microscopic cutoff) and is the one of the main results 
of this paper. We note that in classical theories of polymer 
dynamics it is necessary to make the approximation of 

pre-averaging the Oseen tensor. Here, for length scales 
small compared with the persistence length, the relative 
fluctuations in the position of monomers are small; the 
pre-averaging of the tensor should be exact.16 

It should be noted that increasing the rigidity of the 
filament slows the dynamics since to produce a given 
transverse fluctuation is necessary to excite longer wave- 
length excitations. In the next section we shall give a 
more detailed derivation of these results together with a 
calculation of the line shape measured in a scattering 
experiment. Again, we should note that this result is only 
valid in the limit q[ >> 1; for small q[ we expect to cross 
over to the conventional Rouse and Zimm regimes. We 
also note that this result is only expected to be valid in 
concentration ranges where q-’ and [1/3q-2/3 are small 
compared with the mesh size formed by the actin filaments; 
in higher concentration ranges the behavior becomes more 
complicated and is discussed in section IV. 

111. Dynamic S t ruc ture  Factor 

dinates r, which lets us write immediately 
The energy of an excitation is quadratic in the coor- 

1 
g(q,t) = Jew(- p 2 ( ( z ( s , t )  - z(0,O))’)) ds (3 .1)  

where we have replaced the discrete sum of eq 2.1 by an 
integral equivalent. 

The correlation function in the exponential is calculated 
from the Langevin equation for a semiflexible chain (2.5), 
separating the correlation function into static and dynamic 
parts: 

( ( Z ( S , O )  - Z ( a ” )  + 2((Z(S,O) Z(S’,O) - Z(S,O) z(s ’ , t ) ) )  
(3 .2)  

We will calculate separately those two different contri- 
butions to the correlation function in the following. 

First, the static correlation function is found from the 
following differential equation: 

(KV4 - av2)GO(S;S’,S’’) = kBT(6(S - S ’ )  - 6(S - S”)) (3 .3)  
with boundary conditions 

(KO3 - aV)GO = 0; V2Go = 0 (3 .4)  
for x = 0 and x = L. The desired static part of eq 3.2 is 
simply given by Go(s;s,s’) - Go(s’;s,s’). Taking the limit 
of large L and expanding in the limit Is’- SI[-’ << 1, we find 

(3 .5)  

The dynamic correlation function can be found by 
solving for the Green function associated with the Langevin 
equation (2 .5 ) .  Equipartition is used to calculate the 
spacial correlation function (f(q)*f(q’)) for the stochastic 
force. For the time scales that we are interested in, the 
dynamics of the chain are dominated by bending elasticity. 
In this limit up2 is negligible compared to K P ~ ,  and we find 
that 

( ( Z ( S , O )  Z(S’,O) - Z(S ,O)  Z ( S ’ , t ) ) )  = 

The Oseen tensor H(s,s’) for a rod has the approximate 
form 

1 1 H(s,s’) = - 
87r7 a + Is - s’I (3 .7 )  

valid for 1s - s’I large compared with a, a microscopic cutoff 
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Figure 1. Plot of scaling function g(q,t) on a logarithmic scale 
as a function of q2tSl4, from the paper of Piekenbrock and 
Sackmann's at scattering angle of r/2. The concentration of 
actin is 0.04 mg/mL. The continuous curve is a fit with eq 3.9 
with a mean slope of 129 (cgs units); see text. Curvature due to 
logarithmic corrections is small. 

comparable to the size of a monomer. This function can 
be Fourier transformed17 to give 

H@) = (-y - log@a) + O @ U ) ~ ) / ~ T ~ U  (3.8) 
where y = 0.57. 

From the static and dynamic contributions (3.5) and 
(3.6) of the correlation function we finally find for the 
dynamic structure factor: 

(3.9) 

with 

The function F(s,t) characterizes the propagation of a 
disturbance due to bending modes on a filament. The 
width of a wave packet grows subdiffusively with the law 
s - N4, which is associated with the dispersion relation 
w - q4. Rather surprisingly, the static contribution to 
the integral is dominated by the analytic term (s - s')~[/Z 
rather than the nonanalytic contribution 1s - s'I3/l2 in eq 
3.5. This means that g(q,t) is not a scaling function of its 
arguments. However, substitution of typical numerical 
values for all the constants shows that except a t  very small 
scattering angles we can replace function F(s,t) by F(0,t) 
since the factor exp(-q2s2/6) in eq 3.9 cuts off the integral 
in s extremely rapidly. Thus 

The function F(0,t) has been calculated numerically. If 
we take a typical value of 6 pm for the persistence length,@ 
the coefficient of t3/4 in the exponential of eq 3.11 is 120 
(cgs units) for a scattering angle of 742 for times of the 
order of 103 s. We have replotted the data of refs 13 in 
Figure 1 and find a slope of 129 f 10 (cgs units). Other 
scattering angles give some 30 % variation in the slope, so 
we can consider this as an excellent agreement. Over the 
range of times and wave vectors used in these experiments 
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the variation of the logarithmic correction inF(0,t) is small; 
thus the decay is close to the law e ~ p ( - A q ~ t ~ / ~ ) ;  however, 
its presence is crucial to obtain quantitative agreement 
for the coefficient A. We note that to a very good 
approximation the slope A, in a plot of log (g(q , t ) )  as a 
function of t3/4, varies as [1/4. 

IV. Semidilute Regime 
Until now we have not considered the interactions 

between filaments. For long times (of the order of 100 ms 
in the experiments of ref 13) and high concentrations, 
interactions between the filaments become important. 
Experimentally, this manifests itself by a decay of g(q,t) 
which is estimated to be exp(-q2ta) with 1/3 > a > 1/7. 
Theoretically, we can expect interactions between fila- 
ments to be important when the longest length scale in 
the single filament problem becomes comparable with the 
distance between filaments A. Thus we argue from eq 2.4 
that for the above picture of independent filaments to 
hold we require that [q-2/3 << A. At this moment direct 
contacts between the filaments are still rare, but the 
hydrodynamic coupling (via the Oseen tensor) becomes 
important. 

We have seen that for a single filament the dynamic 
structure factor can be expressed as 

(4.1) 

By making a simple scaling argument for the form of G(x,t) 
in three dimensions, we shall now estimate the form of 
g(q,t) in the case of interacting filaments. 

G(x,t) has the simple physical interpretation as the 
response of the system to an impulsion as the origin at  
time zero. In a system of randomly oriented fibers 
dominated by bending elasticity the propagation from the 
origin should obey the law x N t1l4 found in section 111. 
In our arguments we shall neglect all logarithmic correc- 
tions. There is an important assumption in this propa- 
gation law: that the hydrodynamic interaction which varies 
as l / r  in a dilute solution is screened for large distances; 
otherwise, we would have instantaneous transmission of 
forces over macroscopically large distances. Thus the 
dynamics of points which are separated by a distance which 
is much larger that X is effectively decoupled. Invariance 
of the system by translation then implies the presence of 
a local conserved quantity (by Noethers theorem) which 
is equal to JG(t,x) d3x. This conservation law has the 
simple interpretation as the conservation of the center of 
mass in the absence of external forces. The conservation 
law immediately implies the following scaling form for G: 

G(t,x) = t-3/4G(~/t1/4) (4.2) 
The equivalent statement for a single filament is that G(x,t) 
= t-1/4G(~/t1/4), which is easily verified to be true using 
the results of section 111. Note that for the three- 
dimensional form of this relation to hold, nearby filaments 
(separated by a distance of order A) must be strongly 
coupled; however, as we have already noted, this is true 
because of the form of the Oseen tensor; if we consider a 
segment of filament with length equal to A, the hydro- 
dynamic coupling with a nearby segment is comparable 
in strength with the coupling of the segment with itself. 
Thus the disturbance does not propagate along a single 
filament but rather distributes itself among filaments on 
length scales larger than A. Substituting eq 4.2 into eq 
4.1, we find that 

g(q,t) - e x ~ ( - q ~ t ' / ~ )  (4.3) 
which seems compatible with the experimental data. 
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V. Concluding Discussion 
We have shown that the scattering of a dilute solution 

of semiflexible chains can be understood using simple 
scaling arguments and that the characteristic frequencies 
scale as 0% ~ ~ / ~ l o g ( q ) ,  Our analysis shows that the results 
of dynamic light scattering experiments are consistent with 
earlier, more intrusive, microscopy methods. We conclude 
that there does not seem to be a substantial variation of 
the flexibility of actin filaments in the presence of phallodin 
dyes, unlike suggestions in ref 13. 

We note that all those experiments are performed in 
the presence of magnesium or calcium ions, which are 
necessary for the polymerization of actin filaments from 
globular m0n0mers.l~ Without these ions, the actin 
molecule is fragile and easily denatured. The presence of 
these ions in solution can change the persistence length, 
first by screening electrostatic interactions between ions 
on the filament and second by incorporation in the interior 
of the protein. We have calculated1* the electrostatic 
contribution to the persistence length of an actin filament 
and find a correction of only a few angstroms: direct 
electrostatic effects due to the presence of charges along 
the chain have little influence on the persistence length. 
The problem of incorporation of ions into a protein is 
much more difficult to treat theoretically. Replacing 
magnesium by other divalent ions such as calcium8 or 
chromiuml9 could lead to conformation changes within, 
or on the surface of, one of the globular proteins. Thus 
we might expect that the exact mechanical constants of 
a filament are quite sensitive to the physical chemistry of 
the buffer solution. Further experimentation is necessary 
to elucidate this point. 

It would be interesting to try and study other physical 
systems in the regime [ q  >> 1. It would seem to be difficult 
to find other systems which could be studied with optical 
methods; other biological filaments such as microtubules 
are perhaps too rigid. More promising is perhaps neutron 
scattering where a persistence length of 10 nm should give 
comparable effects to those discussed here. In such 
systems the curve of g(q,t) as a function of q2t3/4 plotted 

Macromolecules, Vol. 26, No. 19, 1993 

in Figure 1 should be recalculated; we would expect that 
the variation in the curvature due logarithmic corrections 
will be more important on this length scale. 
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