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ABsTRAcr Mathematical solutions and numerical illustrations are presented for
the steady-state distribution of membrane potential in an extensively branched
neuron model, when steady electric current is injected into only one dendritic
branch. Explicit expressions are obtained for input resistance at the branch input
site and for voltage attenuation from the input site to the soma; expressions for
AC steady-state input impedance and attenuation are also presented. The theo-
retical model assumes passive membrane properties and the equivalent cylinder
constraint on branch diameters. Numerical examples illustrate how branch input
resistance and steady attenuation depend upon the following: the number of den-
dritic trees, the orders of dendritic branching, the electrotonic length of the den-
dritic trees, the location of the dendritic input site, and the input resistance at the
soma. The application to cat spinal motoneurons, and to other neuron types, is
discussed. The effect of a large dendritic input resistance upon the amount of local
membrane depolarization at the synaptic site, and upon the amount of depolar-
ization reaching the soma, is illustrated and discussed; simple proportionality with
input resistance does not hold, in general. Also, branch input resistance is shown to
exceed the input resistance at the soma by an amount that is always less than the
sum of core resistances along the path from the input site to the soma.

INTRODUCTION

It seems now generally accepted that the many synapses distributed over the den-
dritic surface of a neuron can make significant contributions to the integrative be-
havior exhibited by this neuron as it responds to various spatiotemporal patterns
of afferent input. In some theoretical studies it has been useful to lump the effects
of neighboring synapses and to lump regional groupings of the dendritic branches
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belonging to a neuron (e.g., Rail, 1962, 1964, 1967). Nevertheless, it is clear that
any particular one of these synapses is located upon one particular dendritic branch;
also, when a synapse is made with a dendritic spine, that spine is attached to a par-
ticular dendritic branch. This gives rise to questions about the input resistance
that would be "seen" or confronted by a particular synapse on a particular den-
dritic branch. Questions arise also about the amplitude of membrane depolariza-
tion generated at the synaptic site, and about the attenuation of amplitude as this
membrane depolarization spreads (electrotonically) from the synaptic site to other
locations, both in the same dendritic tree, at the neuron soma, and in other den-
dritic trees of the same neuron. Such questions have been noted and discussed, for
example, by Katz and Miledi (1963, p. 419), Arshavskii et al. (1965), Rail (1967;
1970, p. 184), and Kuno (1971).
This is the first of several closely related papers which provide mathematical

solutions and contribute biophysical intuition toward the understanding of effects
of synaptic input to one branch of an extensively branched neuron model. This
first paper is restricted to the steady-state problem. For a steady current applied
across the membrane at one site in one branch of the neuron model, the complete
steady-state solution for the distribution of electrotonic potential throughout all
branches and trees of the neuron model is obtained. This steady-state solution pro-
vides expressions for branch input resistance and for steady-state attenuation of
electrotonic potential from the branch input site to the neuron soma; numerical
examples are tabulated, illustrated, and discussed.
The second paper' treats the corresponding transient problem, for the injection

of a brief current at the branch input site. Our solution of this more difficult prob-
lem depends upon the conceptual approach (mathematical superposition of simpler
boundary value problems) that is introduced, illustrated, and discussed in the first
paper. In addition to providing a mathematical derivation of the required transient
response functions, the second paper also illustrates and discusses specific computed
examples.

Subsequent papers of this series will deal with the additional theoretical com-
plications involved in treating synaptic input to a dendritic spine. The effect of a
synaptic excitatory conductance at the spine head is coupled to the dendritic branch
by means of the spine stem current. Our solution of this problem depends partly
upon the transient response functions derived in the second paper of this series.
Also, the steady-state interpretations of synaptic input to a dendritic spine make
use of the steady-state results in the first paper of this series. A consideration of
these theoretical results in relation to recent neuroanatomical studies of dendritic
spines has led to a recognition of possible functional implications of spine stem
resistance; a paper presenting and discussing these implications is in preparation.

XRall, W., and J. Rinzel. Manuscript in preparation.
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Brief communications of various portions of this research have already been pre-
sented on several occasions.2

ASSUMPTIONS OF NEURON MODEL

Symmetry and Idealized Branching

Much of our biophysical intuition and many of our mathematical results have been
facilitated by several assumptions of symmetry in our idealized neuron models.
If we had been interested only in the steady-state problem, we could have dispensed
with these symmetry assumptions completely: we could have solved the problem
by the same stepwise procedure (which permits arbitrary branch lengths and diam-
eters) that was outlined earlier (Rall, 1959) for the case of steady current injection
at a neuron soma. The symmetry assumptions are of greatest value in obtaining
the transient solutions;' they permit us to apply the mathematical principle of super-
position to construct the solution of a complicated boundary value problem as a
combination of several simpler boundary value problems. Because it simplifies
our exposition of the particular superpositions we have used, we have chosen to
introduce the method in this steady-state paper. Also, we simplify our presentation
by beginning with more severe symmetry assumptions than superposition actually
requires; the effects of relaxing the severity of these assumptions are examined later
in the Appendix.
Most of our results are expressed for an idealized neuron model composed of

several equivalent dendritic trees (N in number) in which there are several orders
(M) of symmetric dendritic branching. A diagram of one particular example (Fig.
1 A) shows six equal dendritic trees in which there are two orders of symmetric
dendritic branching. It should be pointed out immediately that the angles between
the trees and between the branches are of no importance. These angles do not enter
into any of the mathematics.3 It is the lengths and diameters of the trunks and
branches that are important. Fig. 1 A is intended merely to bring out the equiv-
alences between corresponding lengths and diameters. The soma of this neuron
model is represented by the common origin of the six dendritic trees.

In addition to the symmetry assumptions already noted, we have restricted our
treatment to dendritic trees whose branch diameters satisfy the constraint for trans-

'The use of symmetry and superposition to obtain these solutions was included in a presentation
for the American Association for the Advancement of Science Symposium on Some Mathematical
Questions in Biology, Boston, December, 1969. The mathematical and numerical treatment of cou-
pling the dendritic spine to a branch of the model was presented at the Society for Industrial and
Applied Mathematics National Meeting, Denver, June, 1970. Functional implications for dendritic
spines were presented at the 25th International Congress of Physiological Sciences, Munich, July,
1971, and at the first annual meeting of the Society for Neuroscience, Washington, D. C., October,
1971.
' This follows from the assumption of extracellular isopotentiality; see Other Simplifying Assump-
tions section below.
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FIGURE 1 Diagrams illustrating features of the idealized neuron model. A represents the
neuron model composed of six identical dendritic trees. B indicates the relation of a den-
dritic tree to its equivalent cylinder. C represents the same model as A, with each den-
dritic tree replaced by an equivalent cylinder. D represents the same model as A and C,
with dendritic branching shown explicitly only for the tree which receives input current
injected into the terminal of one branch; the five other trees of the model are represented
by their equivalent cylinders, here shown gathered together. In diagrams A, C, and D,
the point of common origin of the trees or equivalent cylinders is regarded as the neuron
soma; see text.

formations between a tree and an equivalent cylinder (Fig. 1 B; also Rall, 1962,
1964). Except in the Appendix, we have assumed symmetric bifurcations that yield
daughter branches of equal diameter. Together, these assumptions imply that at
every branch point, each daughter branch diameter is about 63 % of its parent
branch diameter; strictly, the requirement is that the 3/2 power of each daughter
diameter be exactly half as great as the 3/2 power of its parent diameter. With
such branching, an entire dendritic tree can be shown to be mathematically equiv-
alent to a cylinder (Rail, 1962); increments Ax of actual dendritic length are ex-
pressed as increments of electrotonic length, AX = Ax/X, where X is the charac-
teristic length of each cylinder as defined below. This equivalence applies to spatio-
temporal spread from the trunk into the dendritic branches; it applies also to
spread from the dendrites to the trunk, when the input is delivered equally to all
terminal branches of that dendritic tree.
The equivalent cylinder concept can be used to reduce the idealized (branched)

neuron model of Fig. 1 A to simpler versions (Figs. 1 C and D) for appropriate
conditions. Thus, for example, if current is injected equally to all terminal branches
of just one of the six dendritic trees of Fig. 1 A, this tree can be treated as an equiv-
alent cylinder which receives input at its distal end. The origin of this cylinder can
be coupled to the origins of five other equivalent cylinders, as in Fig. 1 C. These
other cylinders have the same dimensions as the input cylinder but differ in receiv-
ing no input at their distal ends; they receive equal shares of the current that reaches
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them at their common origin (soma) from the input cylinder. The six cylinders in
Fig. 1 C represent the same neuron model as that in Fig. 1 A; the existence of the
branches makes no difference under the stated condition of input delivered equally
to all terminal branches of the one tree. However, when the input current is in-
jected to only one branch terminal of one dendritic tree, it is necessary to include
the branching details of that tree but not the branching of the other trees, as shown
in Fig. I D. The five equivalent cylinders which do not receive input have been
oriented more together in this figure to emphasize their equivalence with each other
in sharing equally the current that flows to the origin (soma) from the input tree;
the angles between the cylinders have no other significance, as noted earlier.' This
last case (Fig. 1 D) is an illustrative example of the problem we solve below.

Other Simplifying Assumptions

Here we briefly note several other simplifying assumptions of dendritic neuron
models (cf., Rall, 1959, 1962). All dendritic trunks and branches are treated as
cylinders of uniform passive nerve membrane. Extracellular resistivity is neglected,
implying extracellular isopotentiality. This, together with the usual core conductor
assumptions, permits each cylinder to be treated as a one-dimensional cable of
finite length (see Rall [1969 b] for discussion and references). At all branch points,
membrane potential is assumed to be continuous, and core current is conserved.
Dendritic terminals are assumed to be "sealed" or "insulated," implying zero
leakage current across the terminal membrane; except for a terminal where current
is injected, this implies a zero slope (dV/dX = 0) boundary condition, just inside
(not across) the terminal membrane.
The assumption of extracellular isopotentiality brings with it several useful

simplifications. It means that spatial orientation of the dendritic trees and branches
can have no effect upon the distribution of membrane potential over the dendritic
surfaces; only electrotonic distances and boundary conditions are important. It
also provides simpler expressions for the characteristic length X and for the various
input resistances. It should be noted that this assumption represents a good approxi-
mation for some experimental situations, but not for others. For a single dendritic
neuron placed in a volume conductor (which is assumed not to be subjected to an
externally applied electric field) the current flow generated by activity of that neuron
results in gradients of extracellular potential that are negligible relative to the much
larger gradients of intracellular potential along the intracellular core resistance
and across the relatively large membrane resistance (for estimates, see Rall, 1959,
1969 b). When extracellular space is severely restricted, however, either by glial
sheaths or by simultaneous activity in a large population of closely packed cells,
extracellular potential gradients can become comparable with or even greater
than the intracellular potential gradients; see, for example, synchronous activity of
granule cells in olfactory bulb (Rall and Shepherd, 1968, pp. 887-890, 901-904).
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Under such conditions, one must avoid assuming extracellular isopotentiality and
assume an appropriate extracellular resistance per unit length for each cylinder;
also, the effects of tree and branch orientation would then need to be considered.

Because it might be objected that we should not treat the soma as merely the
point of common origin of the dendritic trees, we comment. The superposition
methods of this paper and its transient sequel would lose much of their simplicity
if a lumped soma were explicitly included at the origin of the neuron model. This
can be verified by examining the effect of a lumped soma upon previously published
theoretical transient results (Rall, 1969 a, pp. 1492-1496; see also Rall, 1960, as
well as Jack and Redman, 1971). Our present assumption of a point soma can be
qualified with the thought that a finite soma surface area could be designated, if
needed, as being composed of several initial length increments, one from each
dendritic trunk. Finally, we note also that the neuron model of the present paper
does not include an axon- or a spike-generating locus; our focus of attention is
upon the contribution of passive membrane electrotonus to the integrative proper-
ties of the extensively branched neuron model.

SYMBOLS

For Membrane Cylinders

Vm - Vs - V Membrane potential, as intracellular minus extracellular
electric potential; (volts).

V = Vm-Er Electrotonic potential, as deviation of membrane poten-
tial from its resting value Er; (volts).

Ri Resistivity of intracellular medium; (ohms centimeters).
Rm Resistance across a unit area of membrane; (ohms square

centimeters).
d Diameter of membrane cylinder; (centimeters).
ri 4Ri/(r d2) Core resistance per unit length; (ohms centimeters--).
X - [(Rm/Rs)(d/4)]112 Characteristic length of membrane cylinder, when extra-

cellular resistance is neglected; (centimeters).
x Actual distance along a cylinder axis; (centimeters).
AX = Ax/X Increment of electrotonic distance; (dimensionless).
X = f- (1/X) dy Electrotonic distance from origin; in a tree, X changes at

each branch point; (dimensionless).
R,, =Xr, = (2/7r)(,mRJ)12(d)-312 Input resistance at origin of membrane cylinder of

semi-infinite length; (ohms).

For Membrane Cylinders ofFinite Length

L Electrotonic distance from origin (X = 0) to the end of cylinder (X = L).
RCL, ins Input resistance at end (X = L) for a cylinder insulated (dV/dX = 0) at the origin;

Eq. 7.
RCL, alp Input resistance at end (X = L) for a cylinder clamped (V = 0) at the origin;

Eq. 9.
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For Idealized Neuron Model

N Number of equivalent dendritic trees (or their equivalent cylinders)
that are coupled at X = 0.

L Electrotonic length of each of those trees or equivalent cylinders.
M Number of orders of symmetric branching, specifically in the dendritic

tree which receives the input.
XI Electrotonic distance from the origin to the first point of branching.
Xk Electrotonic distance from the origin to the kth-order branch points.
RT0 Value of R. for the trunk cylinder of one dendritic tree.
RN Whole neuron input resistance at the point (X = 0) of common origin

of the N trees or equivalent cylinders; Eq. 11.
RNCL Input resistance at the end (X = L) of one equivalent cylinder of the

neuron model, for current applied as in Fig. 2 F; Eq. 14.
RBL Input resistance at the end (X = L) of one terminal branch of the neuron

model, for current applied as in Figs. 1 A and D; Eq. 22.
VBL Steady value of V at input branch terminal.
VO Steady value of V at the origin of the neuron model.
AFBLIO = VBL/VO Attenuation factor from input branch terminal to soma; Eq. 26.

For the Discussion

Vin Steady value of V at some synaptic site.
Rin Input resistance at this synaptic site.
go Synaptic excitatory conductance at this synaptic site.
Vo = E- Er Synaptic excitatory equilibrium potential, being the difference between

the excitatory emf and the resting emf.
(Ve -Vin) Effective steady driving potential for synaptic current.
Vin/Ve Normalized steady synaptic depolarization; Eq. 32.
AX = L/(M + 1) For equal electrotonic increments.

THEORY

For the usual assumptions of one-dimensional cable theory, steady-state distribu-
tions of membrane potential along the length of a passive membrane cylinder must
satisfy the ordinary differential equation

d2V/dX2- V = 0, (1)

where X and V are explicitly defined in the list of Symbols. Because we wish to
exploit even and odd symmetry about the origin, we express the general solution of
Eq. 1 in terms of hyperbolic functions,4 as follows,

V=AsinhX+BcoshX, (2)

4 The hyperbolic sine and cosine are defined and tabulated in standard mathematical tables. Because
sinh (-X) = -sinh (X), this function has odd symmetry about the origin. Because cosh (-X) =
cosh (X), this function has even symmetry about the origin.
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where A and B are arbitrary constants to be determined by the boundary condi-
tions.
When a steady current I is injected at the terminal (X = L) of a cylinder of

finite length, the terminal boundary condition can be expressed

dV/dX = IRE, at X = L, (3)

where R. represents the input resistance for a semi-infinite length of such a cylin-
der. It may be noted that both the diameter and the materials of the cylinder are
included in the definition of R. ; see the list of Symbols. To understand this bound-
ary condition, it is helpful to note that the intracellular (core) current (flowing
parallel to the cylinder axis and taken as positive when in the direction of increasing
x) can be given several alternative' expressions

(-dV5ldx)/r, = (-dVi/dX)/(Xri) = (-dV/dX)/R, .

When the injected current is positive, the resulting core current is negative, because
it must flow from X = L toward the origin. Furthermore, we assume that none of
the injected current can leak out through the sealed terminal of the cylinder; there-
fore, the core current must equal exactly -I at X = L, and Eq. 3 must hold. It
should be added that for a cylinder which extends from the origin to a terminal at
X = -L, the sign becomes reversed, because a positive current injected at this
terminal would result in a positive core current flowing from X = -L toward the
origin. Thus, the boundary condition for current injection at X = -L differs
from Eq. 3 by a minus sign.

Even Symmetry for 2L; or Length L Insulated at the Origin

For a cylinder of length 2L diagram A in Fig. 2 illustrates the case of even sym-
metry, where the same steady current I/2 is injected at both ends (X = 4L) of
the cylinder. This symmetry requires4 that A = 0 in Eq. 2; the value of B can be
determined from the boundary condition at either end. Because the core current
at X = L must equal minus I/2 in this example, we see (from Eq. 3, above) that
the boundary condition here can be expressed

dV/dX = (I/2)?,, at X = L. (4)

Together with A = 0 in Eq. 2, this boundary condition implies that B = (1/2)R1,

6 The first expression simply represents Ohm's Law. The second uses the substitution, dx =XdX,
which follows from the definition of X. The third expression depends upon two substitutions: Xr; =
RB., by definition, and dV/dX = dV/dX, because V = Vi- V. - Er, and both V. and Er are
assumed to be constants (independent of X).
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FIGURE 2 Diagrams illustrating superposition of component boundary value problems
charaterized by even and odd symmetry; see text. A, B, and C refer to a cylinder of length
2L. A shows even symmetry for equal source currents at both ends; the graph of V with
distance shows zero slope at origin (X = 0), corresponding also to insulated boundary
condition at origin. B shows odd symmetry for a source current at X = L with a match-
ing sink current at X = -L; the graph shows V = 0 at origin, corresponding also to
voltage-clamped boundary condition at origin. C shows the superposition of A and B;
the graph shows zero slope at X = -L, corresponding to insulated boundary condition
at X = -L. D, E, and F refer to a neuron model composed of six equal cylinders of length
L like Fig. 1 C; one cylinder extends to the right, to disinguish it from the other five, shown
gathered to the left of the common origin. D shows even symmetry for equal source cur-
rents 1/6 applied to the distal ends of aJl six cylinders; the graph shows zero slope at the
origin. E shows the result of five source-sink current pairs, where one cylinder receives
all five source currents, while each of the other five cylinders receives one of the (- 1/6)
sink currents; the graph shows discontinuous slope at origin, where the one cylinder has a
slope which is five times as steep as that in each of the five other cylinders. F shows the
superposition of D and E, where the resultant current is all applied to one cylinder; the
graph shows that the five other cylinders satisfy a zero slope (insulated) boundary con-
dition at their distal ends; graph also shows a fivefold discontinuity of slope at the origin,
in agreement with E.

BIOPHYSICAL JoURNAL VOLUME 13 1973656



sinh L, and that the solution for this case of even symmetry can be expressed

V(X) = (I/2)R. cosh X/sinh L, (5)

for the entire range, -L < X < L. It should be noted that the case of even sym-
metry necessarily implies the condition

dV/dX=0, atX=0, (6)

which corresponds also to an insulated or sealed boundary at X = 0, as noted in
Fig. 2 A.
The input resistance at X = L, for this case of a cylinder insulated at the origin,

is the ratio of the steady input voltage, V(X) at X = L, to the steady input current
I/2. It follows from Eq. 5 that this input resistance can be expressed

RCL, ins = R. coth L. (7)

For example, if L = 1.0, this input resistance is 1.313 times R. . For values of L
greater than 2.65, this resistance differs from R. by less than 1 %.

Odd Symmetry for 2L; or Length L Clamped at the Origin

For a cylinder of length 2L diagram B in Fig. 2 illustrates the case of odd sym-
metry, where a steady source current I/2 is injected at X = L, and a matching
steady sink current -I/2 is applied at X = -L. This odd symmetry requires that
B = 0 in Eq. 2; the value of A can be determined from the boundary condition at
either end. The boundary condition at X = L can be expressed in the same form
as Eq. 4, but here, with B = 0 in Eq. 2, this boundary condition implies that A =
(I/2)R./cosh L, and that the solution for this case of odd symmetry can be ex-
pressed

V(X) = (I/2)R0 sinh X/cosh L, (8)

for the entire range, -L < X < L. It should be noted that the case of odd sym-
metry necessarily satisfies the condition V = 0 at X = 0 which is equivalent to a
voltage-clamped boundary condition at X= 0, as noted in Fig. 2 B.

Setting X = L in Eq. 8, we see that the input resistance at X = L can be ex-
pressed, for this case of a cylinder clamped (V = 0) at the origin, as

RCL,Ilp = R.,tanhL. (9)

For example, if L = 1.0, this input resistance is 0.762 times R. . For values of L
greater than 2.65, this resistance differs from R.r by less than 1 %.
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Whole Neuron Input Resistance at Origin (Soma) of Neuron Model

Consider a neuron model composed of N equal dendritic trees coupled to a com-
mon origin (Fig. 1 A). Each tree has a trunk whose diameter and materials can
be characterized by RT0,, the input resistance at the origin of a trunk cylinder ex-
tended to semi-infinite length. Each dendritic tree is assumed to have a finite elec-
trotonic length L and, in those situations (such as current injection at the origin)
where it is not necessary to distinguish between separate dendritic branches, each
dendritic tree can be represented as an equivalent cylinder (Figs. 1 B and C) of
electrotonic length L. We assume all dendritic terminals to have sealed (insulated)
ends; this implies a zero slope (dV/dX = 0) boundary condition at X = L. If the
current, I is injected at the common origin ofN such cylinders, I/N flows into each
cylinder, and the steady potential distribution can be expressed, for each cylinder, as

V(X) = (I/N)RT. cosh (L - X)/sinh L, ( 10)

which satisfies the boundary conditions at X = 0 and at X = L. The whole neuron
input resistance RN at the origin of this model is the ratio of the steady input voltage
V(X) at X = 0 to the steady input current I. It follows from Eq. 10 that this input
resistance can be expressed

RN = (RTocoth L)/N. (11)

For example, consider L = 1.0 and N = 6; then RN is 0.219 times RT, . For values
of L greater than 2.65, RN differs from RTO/N by less than 1 %.

Effect of Restricting Input Current to One Cylinder of Neuron Model

Suppose that a steady current I/N is injected at the end of each cylinder, as illus-
trated in Fig. 2 D for the case of N = 6. Then there is even symmetry with respect
to the origin, and Eqs. 4-7 apply, with I/N replacing I/2, and RT, replacing R .
Next, instead of this even symmetry, suppose that a steady source current I/N
is injected at the end of only one cylinder, while a steady sink current -I/N is
applied to the end of one other cylinder. For the special case of N = 2, this is
exactly the same as Fig. 2 B and Eqs. 8 and 9. For N greater than 2, it should be
noted that the additional cylinders would not be disturbed by the single source-sink
pair just described.8 Thus, as shown in Fig. 2 E, we can superimpose (N-2)
additional source-sink pairs, with the result that one cylinder receives a combined
source current (N - 1)I/N at its end X = L while each of the (N - 1) other
cylinders receive separate sink currents each of which equals -I/N; note that this

6 The several cylinders are connected only at the origin, and the source-sink pair satisfies two con-
ditions: V = 0 at the origin, and the current reaching the origin from the source is exactly matched
by the current flowing from the origin toward the sink.
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superposition of source-sink pairs preserves the voltage-clamped condition (V = 0)
at the origin (Fig. 2 E).
Now we can superimpose the N sources of Fig. 2 D with the (N - 1) source-

sink pairs of Fig. 2 E to obtain the combined result of Fig. 2 F, where one cylinder
receives a combined current injection I at X = L, while the complete cancellation
of the source and sink currents at the ends of the (N - 1) other cylinders implies
that their ends receive zero resultant input current and thus correspond to insulated
ends.
As is indicated in Fig. 2 F, it is convenient to let the input cylinder be represented

by positive values of X, and to let the (N - 1) other cylinders be represented by
negative values of X. Thus, the superimposed solution can be represented mathe-
matically (using Eqs. 5 and 8 with I/2 replaced by I/N, and R. replaced by RTO)
by the following two expressions: for the input cylinder (i.e., for 0 < X < L),

V(X) = (I/N)RTo, [cosh X/sinh L + (N - 1) sinh X/cosh L], (12)

while, for each of the (N - 1) other cylinders (i.e., for -L < X < 0),

V(X) = (I/N)RToc [cosh X/sinh L + sinh X/cosh L]. (13)

It may be noted that this steady-state solution does satisfy continuity of V and
conservation of core current at the origin; it also satisfies the current input boundary
condition (dV/dX = IRT,,) at X = L of the input branch, as well as the zero slope
boundary condition at each terminal (X = -L) of the N - 1 other cylinders of
the neuron model.

Setting X = L in Eq. 12 and dividing by the steady input current I we see that
the input resistance at X = L of the input cylinder can be expressed, for this case
of current injection at the end of one cylinder of the neuron model, as

RNCL = RT,[coth L + (N - 1) tanh L]/N. (14)
It can be seen that for N = 1, this equation reduces to Eq. 11, as it should. Also,
for large L, where both the hyperbolic tangent and hyperbolic cotangent differ
negligibly from unity, this resistance differs negligibly from RT0,, as would be ex-
pected from the physical intuitive consideration that the boundary condition at
the origin should have negligible effect upon the terminal input resistance when L
is large enough. Additional insight into this result can be obtained by referring
this result to the insulated and "clamped" (even and odd) results of Eqs. 7 and 9;
then the present result can be expressed

RNCL = [1/N]RCL, ins + [(N - I)/N]RCL, clp (15)
where we have identified RT. (of Eq. 14) with R. (of Eqs. 7 and 9).
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A physical interpretation of this result is that a fraction 1/N of the input current
is completely dissipated in the input cylinder (as though there were insulation at
the origin; see Figs. 2 A and D), while the remaining fraction (N - 1)/N of the
input current dissipates partly in the input cylinder and partly in the other cylin-
ders (as though the origin were clamped to V = 0; see Fig. 2 E).

In view of earlier Eq. 11 for the whole neuron input resistance RN at the origin,
we can use Eq. 14 to express the ratio

RNCL/RN= 1 + (N - l)(tanh L)2. (16)

For example, if L = 1.0 and N= 6, the input resistance RNCL defined by Eqs.
14-16 is 3.9 times RN, or 0.86 times RT., . For large values of L, the input resistance
ratio of Eq. 16 is nearly N.

It is also interesting to note that the special case N = 2 which reduces Fig. 2 F
to Fig. 2 C, also reduces Eq. 14 to the simpler expression

R2CL = RT.(coth L + tanh L)/2

= RT, coth (2L), (17)

where the second form follows from a standard identity. This agrees, as it should,
with Eq. 7 for a doubling (from L to 2L) of the distance from the insulated end
to the input end of a cylinder; compare Fig. 2 C with the right half of Fig. 2 A.

Effect of Restricting Input Current to One Dendritic Branch Terminal

We consider first the case where there is only one order of symmetric dendritic
branching. Diagrams A, B, and C in Fig. 3 illustrate the superposition method for
this case. If both branch terminals of one tree receive the same steady input current
I/2 (as in Fig. 3 A) the distribution of steady membrane potential must be exactly
the same in both branches. Given that the branch diameter satisfies the constraint
for transformation of this tree to an equivalent cylinder, this case is equivalent
to the injection of I at X = L in the equivalent cylinder. In other words, the case
of Fig. 3 A is equivalent to that of Fig. 2 F, and the steady-state solution is the
same as that given by eqs. 12 and 13.
Now we consider the particular kind of odd symmetry illustrated by Fig. 3 B,

where a steady source current I/2 is injected at one branch terminal, while a match-
ing steady sink current -I/2 is applied at the other branch terminal. Let X = XI,
define the (first-order) branch point. The odd symmetry between the two branches
implies that V = 0 at X = X1, and that all of the current flowing to X = X1 from
the source branch must exactly equal all of the current flowing from X X1 into
the sink branch. This source-sink pair supplies no current or voltage to the trunk or
the other trees, which is why they are dotted in Fig. 3 B. The distribution of steady
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B

INSULATED'
FIGURE 3 Extension of superposition method to dendritic branching in one tree; see text.
Diagrams A, B, and C, represent the simplest case of only one order of branching, with a
pair of equal branches. A shows even branch symmetry, with equal source currents to both
branch terminals. B shows odd branch symmetry, with a source current applied to one
branch terminal and a matching sink current applied to the other; no current flows in the
dotted regions. C shows the superposition of A and B, where the resultant current is all
applied to one first-order branch terminal. Diagrams D, E, and F represent the extension
to second-order branching. D shows even branch symmetry only for the pair of secondary
branches belonging to one primary branch, with equal sources currents to both of these
secondary branch terminals. E shows odd branch symmetry, for a source-sink current
pair applied to one pair of secondary branch terminals. F shows the superposition of D
and E, where the resultant current is all applied to a single secondary branch terminal.

potential in the source branch, due to this source-sink pair alone, can be expressed

V(X) = (I/2)(2RT,) sinh (X - Xl)/cosh (L - XI), (18)

for the range, X1 < X < L; the sister (sink) branch has corresponding negative
values. This odd symmetry may be compared with that of Fig. 2 B and Eq. 8.
Here, we note that (W/2) is the amount of the source current, and that (2RToO) is
the R.: value for each branch cylinder; this R. value follows from the equivalent
cylinder constraint which requires that symmetric branches each have a dI/2 value
equal to half the trunk value.

Steady-State Solution for One Order of Branching

By superimposing the odd branch symmetry of Fig. 3 B with the even branch sym-
metry of Fig. 3 A, we obtain the case of input to a single branch of first order,
Fig. 3 C. Within this input branch, the resultant solution is given by the sum of
Eqs. 12 and 18 (i.e., the righthand sides) for the range X1 < X < L. For the sister
branch, the solution is given by Eq. 12 minus Eq. 18. For the trunk (O < X < X1),
Eq. 12 alone is still the solution; also, for the (N - 1) other trees, Eq. 13 is still
the solution assuming (-L < X < 0) as before.

This result has the interesting implication that the solution in the trunk and in
the other trees is completely unaffected by whether the input current I is injected
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entirely into one branch terminal or divided equally between the two branch termi-
nals, and this is easily generalized to include any apportionment of this input cur-
rent between these two branch terminals.

Extension to Higher Orders of Branching

Diagrams D, E, and F of Fig. 3 illustrate the additional superposition required
when we add a second order of symmetric branching. When the same steady input
current I/2 is delivered to the terminals of the two secondary branches belonging
to the same parent primary branch (Fig. 3 D), the distribution of steady membrane
potential is the same in both of these secondary branches and is equivalent to that
of Fig. 3 C, just solved above.
Now we consider the case of odd symmetry between this pair of secondary

branches (Fig. 3 E), with a steady source current I/2 injected at the terminal of
one secondary branch, while a matching steady sink current -I/2 is applied at
the terminal of its sister branch. Let X = X2 be the electrotonic distance, from
origin to second-order branch point. In analogy with the previously considered odd
symmetry between a pair of primary branches (Fig. 3 B), this case of odd symmetry
between a pair of secondary branches has V = 0 at X = X2, and supplies no cur-
rent or voltage to any of the regions shown dotted in Fig. 3 E. The distribution of
steady potential in the source branch, due to this source-sink pair alone, will be
expressed in the more general form that applies to a branch pair of kth order, where
the particular case k = 2 corresponds to the secondary branches of Fig. 3 E; this
general form is

V(X) = (1/2)(2kRToo) sinh (X - Xk)/cosh (L - Xk), (19)

for the range, Xk < X < L; the sister (sink) branch has corresponding negative
values. We note that (W/2) is the amount of the source current (of the source-sink
pair), and that (2kRTo) is the R. value for a kth-order branch, on the assumption
of symmetric branching in a tree satisfying the equivalent cylinder constraint. It
may be noted that Eq. 19 agrees, when k = 1, with Eq. 18, as it should.
The case of input restricted to the terminal of a single secondary branch (Fig.

3 F) is obtained by superimposing the odd (secondary branch) symmetry of Fig.
3 E with the even (secondary branch) symmetry of Fig. 3 D, where we have already
noted that the latter is equivalent to the case of Fig. 3 C, for one order of branching.
This method can now be generalized by using Eq. 19 in successive superpositions,
as the order k is stepped from 1 to M in unit steps.

Steady-State Solution for Branch Terminal Input with M Orders
of Branching

When there are M orders of symmetric branching in the input tree, the method of
successive superpositions (using Eqs. 12 and 19) leads to the following general
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expression for the distribution of potential in this neuron model when the steady
current I is injected only at the terminal of one branch,

cosh A snh X
M Bk sinh (X -XkV(XM IR csX+ AsnX+2X)sinh L N cosh L k-I cosh (L -x 20)

where A and Bk are simple constants whose values are specified according to loca-
tion, as follows:

in the input tree A = N- 1;
in the input branch Bk = 1, for all k from 1 to M;
in the sister branch same, except BM = -1;
in the parent branch same, except BM = 0;
in first cousin branches same, except BM = 0, and BM-1 = -1;
in grandparent branch same, except BM = 0, and BM1 = 0;

in the input trunk Bk = 0 for all k; (cf. Eq. 12);
in the other trees JA= 1, assuming, 7X < 0, and

|Bk= 0, for all k; (cf. Eq. 13).
A specific example of such solutions is presented and illustrated in the Results
section below.
By differentiating Eq. 20 with respect to X and setting X = L, we can verify

that the boundary condition at the input-receiving branch terminal is correctly
satisfied; thus

(dV/dX)X=L = IRTo {(I/N) + (N - 1)/N + 2kZ 1)

=2MIRTo, (21)

which is I times the R14 value of a Mth-order branch cylinder, as it should be,
according to Eq. 3. For the sister branch, the corresponding expression for its
terminal boundary condition reduces to zero because the last term of the summa-
tion has a minus sign. A zero slope boundary condition is similarly satisfied at
the ends of all terminal branches (except the input branch) of this neuron model.
The other boundary conditions, continuity of V and conservation of core current
at every branch point, have been satisfied also by the method of superposition
used; each odd function that was superimposed at a branch point contributed
zero to the value of V at that point, and contributed a source-sink pair of currents
whose net contribution was also zero at that point.

Input Resistance for Current Injected to a Single Branch Terminal

We can now give the general expression for the input resistance RBL for current

injected at the terminal (X = L) of one dendritic branch of a neuron model com-

7 This sign convention agrees with Figs. 2 D, E, F and with Eq. 13. Alternatively, if the other trees
are represented by positive values of X, as in Fig. 4 and in expression 27 below, then A = -1.
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posed of N equal dendritic trees, with M orders of symmetric dendritic branching
(which satisfy the equivalent cylinder constraint). By setting X = L in Eq. 20 (for
the input branch) and dividing by the steady input current I we obtain the input
resistance

REL = RT {cothL + (N-)tanhL + E2-) ta (L - Xk)} (22)

For the special case of no dendritic branching, M = 0 and the summation ex-
pression in Eq. 22 contributes nothing; this equation then reduces to Eq. 14. Also,
the special case of a long input branch makes all of the hyperbolic tangent and
hyperbolic cotangent values close to unity; then (as seen with Eq. 21) the expression
for RBL reduces essentially to 2mRT@o , which is the R. value of an Mth-order branch
cylinder, as would be expected from physical intuitive considerations.

In this expression, the size and the materials of the neuron model are incorporated
in RT,., which is the limiting value of the input resistance of a dendritic trunk
cylinder, when extended to semi-infinite length. In experimental situations, how-
ever, it is the value of the whole neuron input resistance RN at the soma that is the
most useful reference value. Also, referring to Eq. 11 for RN, we see that it is not
difficult to express the ratio of these two input resistances, RBL and RN, as follows:

M

RBLIRN = 1 + (N - l)(tanh L)2 + Ntanh (L) 2(k-1) tanh (L - Xk). (23)
k-i

This is the expression that was used to compute the table of illustrative values given
in the Results section below; a more general expression is derived in the Appendix.

Steady-State Attenuation Factorfrom Branch Terminal to Soma

Attenuation factors are usually defined as the ratio of an amplitude or intensity
at the input location to the smaller (attenuated) value found at a point of observa-
tion or output. So defined, the attenuation factor is a number greater than one;
also, increased attenuation results in an increased attenuation factor. For the pres-
ent problem of steady-state voltage attenuation, the voltage at the terminal of the
input branch of the neuron model can be obtained most simply as

VBL = IRBL . (24)

The corresponding voltage at the origin (soma) can be obtained by setting X = 0
in Eq. 12, 13, or 20; this gives

VO= IRr0/ (N sinh L)
= IRN/cosh L, (25)

where the second expression makes use of Eq. 11 for RN.
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Now, by taking the ratio of VBL to Vo, we can write the following expression
for the attenuation factor, from input branch terminal to the soma,

AFBLIO = (RBL/RN) cosh L, (26)

where the ratio of input resistances inside the parentheses is precisely that defined
by Eq. 23, above. This tells us that the attenuation factor is closely related to, but
not identical with, the ratio of the input resistances at the input branch terminal
and at the soma; the attenuation factor is always larger, because cosh (L) is greater
than unity for all L values greater than zero. Illustrative values are given in the
Results section, below; a more general expression is derived in the Appendix.

Note on Generalization of Theory

The Appendix provides more general results for branch input resistance and for
attenuation factor. The input current can be applied at any point of any branch.
Daughter branches need not be equal, but their diameters still must satisfy the more
general equivalent cylinder constraint. Also, the dendritic trees need not be of
equal trunk diameter, and the results are even further generalized to provide for
trees that need not have the same electrotonic length. The final section of the Appen-
dix provides results for AC steady-state impedance and attenuation.

ILLUSTRATIVE RESULTS

Example of Potential Distribution throughout Neuron Model

The method of solution described above has been used to compute the particular
example illustrated in Fig. 4. This is a case of six dendritic trees with three orders
of branching, i.e., N = 6 and M = 3. Here each tree has an electrotonic length
L = 1 which is divided into four equal electrotonic increments, AX = 0.25, for
each trunk and each order of branching. The steepest gradient of membrane poten-
tial occurs in the input branch (BI); most of the input current reaches the parent
branch point (P). Very little of this current flows out into the sister branch (BS);
most of it flows through the parent branch where the gradient with respect to X
is roughly half as steep as that in the input branch, because the R. value of the
parent branch cylinder is half that of the input branch cylinder. At the grandparent
branch point (GP), relatively little current flows into the first cousin branches
(BC-1), and most of the current flows through the grandparent branch, where the
gradient with respect to X has been roughly halved again. In contrast to the steep
gradients in the input branch and the parent and grandparent branches, the dashed
curve in Fig. 4 shows the smaller gradient obtained if the same total amount of
input currently were divided equally between the eight terminal branches of one
dendritic tree. This dashed curve is continuous with the curve for this tree trunk;
in fact, the solution in this trunk would be the same for any apportionment of the
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BS

1.0

GP
BC-1

SOMA =L j BC-2

0 0.25 °.50 0.75 X/X
FiGuRE 4 Branching diagram (upper left) and graph (below) showing steady-state values
of V as a function of X in all branches and trees of the neuron model, for steady current
injected into the terminal of one branch. BI and BS designate the input branch and its sister
branch; P and GP designate their parent and grandparent branch points; BC-1 and BC-2
designate first and second cousin branches, with respect to the input branch; OT desig-
nates the other trees of the neuron model. The model parameters are N = 6, L = 1, M = 3,
with equal electrotonic length increments AX = 0.25 assumed for all branches. Ordinates
of graph express V/IRT, values, as defined by Eqs. 12, 13, and 20; see also expressions 27-31
and commentary in text.

same total input current between these eight branch terminals. Also, the solution
from the soma into the five other trees (OT) is the same for any such apportion-
ment of the same input.
The values of membrane potential shown in Fig. 4 are given as the dimension-

less ratio of V(X) to IRT. . For the other trees (OT), these values were obtained from
the expression

0.142 cosh X - 0.108 sinh X, (27)

which follows from Eq. 13; (the minus sign is used here together with positive
values of X for these cylinders). For the trunk of the input tree and for the dashed
curve in Fig. 4, the values were obtained from the expression

0.142 cosh X + 0.54 sinh X, (28)
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which follows from Eq. 12. For the grandparent branch, which extends from X =
0.25 to X = 0.5, one must add to the value of expression 28, the value of

sinh (X - 0.25)/cosh (0.75), (29)

based on Eq. 18. However, for the other half of this tree, extending from X = 0.25
to the four terminals of the second cousin branches (BC-2), the value of expression
29 was subtracted from that of expression 28.
For the parent branch, extending from X = 0.5 to X = 0.75, one must add to

the value of expressions 28 plus 29 also the value of

2 sinh (X - 0.5)/cosh (0.5), (30)

based on Eq. 19 with k = 2. For the input branch, extending from X = 0.75 to
X = 1.0, one must add to the value of expressions 28 plus 29 and 30 also the ex-
pression

4 sinh (X - 0.75)/cosh (0.25), (31)

based on Eq. 19 with k = 3. For the sister branch (BS), the value of expression
31 was subtracted from that of expressions 28 plus 29 and 30. In that portion of
the tree which extends from the grandparent branch point (GP) to both terminals
of the first cousin branches (BC-1), the value of expression 30 was subtracted
from that of expressions 28 plus 29.

Examples of Input Resistance Ratio and Attenuation Factor

In Fig. 4, the value plotted for V/IRT., at the input terminal is about 3.4, while
that at the origin (soma) is 0.142; the ratio of these two numbers gives a value of
23.9 for the attenuation factor from input terminal to soma. Alternatively, one can
use Eq. 23 to obtain a value of 15.5 for the input resistance ratio RBL/RN, and then
use Eq. 26 to obtain a value of 23.9 for the attenuation factor. Many additional
examples have been calculated and listed in Table I.

All of the values in Table I depend upon specifying the values of N, L, and M for a
symmetrically branched neuron model, with the additional simplifying assumption
that the successive branch points Xk are equally spaced, with increments in X given
by AX = L/(M + 1). The value inside each parenthesis in Table I gives the input
resistance ratio RBLIRv, defined by Eq. 23. The value immediately below each
parenthesis gives the corresponding attenuation factor, defined by Eq. 26. Several
useful rough generalizations about the effects of changing the value of N, L, or
M separately can be made from inspection of the values in Table I.

Effect of increasing L, with N and M constant. Consider the effect of
doubling the value of L from 1.0 to 2.0; this means doubling all trunk and branch
lengths, when expressed in units of X. Comparison of the first two columns of
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TABLE I

INPUT RESISTANCE RATIO (RBLIRN) AND STEADY-STATE
ATTENUATION FACTOR AFBLIO

N =6 L =1.5
M

L=1.0 L = 2.0 N= 6 N= 10

2 (9.5) (17.4) (14.3) (23.6)
14.7 65.5 33.6 55.4

3 (15.5) (30.4) (24.2) (40.2)
23.9 114 56.8 94.4

4 (26.0) (53.6) (41.7) (69.4)
40.1 202 98.0 163

5 (44.6) (95.4) (73.1) (122)
68.8 359 172 286

6 (78.0) (172) (130) (216)
120 647 305 508

7 (138) (311) (233) (388)
213 1170 548 912

8 (248) (569) (422) (704)
352 2140 992 1650

Table I shows that the input resistance ratio is roughly doubled, and that the attenu-
ation factor increases roughly fivefold. With the larger M values, these factors of
increase are somewhat larger.

Effect of increasing N, with L and M constant. We examine the effect of
increasing N from 6 to 10, when L = 1.5 and M is constant, by comparing the
last two columns of Table I. Both the input resistance ratio and the attenuation
factor increase by a factor that is very close to 10/6. We can understand this most
easily by considering, for example, that the dendritic trees are not changed in size
(i.e., RT. is held constant). Then RBL is little changed, because the distribution of
input current in the input tree is almost unchanged; it is only slightly affected by
the boundary condition (at the origin) with the other trees. However, the value of
RN is very significantly changed; the parallel input resistance of 10 trees must be
reduced to exactly 6/10 of that for 6 trees of the same size. For such conditions,
the increase in the input resistance ratio and in the attenuation factor can be at-
tributed almost entirely to the 6/10 factor in RN.

Effect of increasing M, with N and L constant. The previous example of
N= 6, L = 1, and M= 3 implied trunk and branch increments of AX = 0.25
(see Fig. 4). If we preserve these values of N and L, and increase M by four orders
of branching to M = 7, this results in AX = 0.125, with eight increments. The
values in Table I show an approximately ninefold increase, from 15.5 to 138 for
the input resistance ratio, and from 23.9 to 213 for the attenuation factor. Through-
out Table I, an increase of M by four orders, while N and L are held constant,
results in around a 9- or 10-fold increase. In other words, the factor of increase per
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unit increase in M is given roughly by the square root of three, for the values in
Table I. We gain some additional insight by noting that changes in M can have no
effect upon the value of RN when N, L, and RT.r are held constant (see Eq. 11).
Under such conditions, the increase in the input resistance ratio and in the at-
tenuation factor, with increase in M, can be attributed entirely to the increase
of RBL, which can be attributed, in turn, to the smaller diameters of the higher
order branches.

Nonreciprocity of Branch Attenuation

Comparison of the attenuation along the input branch and its sister branch (in
Fig. 4) is instructive because neurophysiologists sometimes argue, erroneously,
that the attenuation along a dendritic branch should be the same, whether it takes
place in the centripetal or the centrifugal direction. This fallacy presumably results
from noting that the core resistance is the same in both directions, while forgetting
the importance of the boundary conditions. In Fig. 4, the attenuation from the
parent branch point (P) to the terminal of the sister branch (BS) is rather small
because of the insulated (zero slope) boundary condition at the terminal; in con-
trast, the attenuation from the terminal of the input branch (BI) to the pare nt branch
point (P) is much larger because the boundary condition at P permits a large amount
of current to flow from the input branch into the thicker parent branch. Here, the
input branch and its sister branch have exactly the same core resistance; the dif-
ference results entirely from the boundary conditions. Similarly, in Fig. 2 the graphs
show how attenuation from X = L to the origin depends upon the boundary
condition at the origin. An earlier publication (see Eq. 3 and Fig. 3, pp. 496-498,
Rall, 1959) provides both a mathematical expression and a graphical illustration
for such dependence of attenuation upon boundary conditions.

DISCUSSION

Application of Theoretical Results to Motoneurons

Motoneurons of cat spinal cord are large neurons whose input resistance values
(RN usually between 0.5 and 2.5 MU) are lower than for most other neurons in the
mammalian central nervous system. The notion that the equivalent cylinder con-
straint might apply to motoneurons, at least as a rough approximation, was sug-
gested some time ago (Rall, 1959) on the basis of preliminary evidence. Recently,
Lux et al. (1970) checked 50 dendritic bifurcations in 7 carefully studied moto-
neurons and reported that the ratio of the summed d3/2 of the daughter branches to
the parent da/2 ranged from 0.8 to 1.2, with a mean of 1.02 + 0.12 (SD). Also,
Barrett and Crill (1971) found that (except for a sharp initial taper of the dendritic
trunks) the summed d312 value decreases only rather gradually with distance. These
results, together with unpublished calculations based upon the data of Aitken and
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Bridger (1961), imply that motoneuron dendritic trees may reasonably be approxi-
mated by equivalent cylinders, and furthermore, that the electrotonic length L
for soma plus dendritic tree ranges between 1 and 2, with a mean value around
1.5 (see also Rall, 1964, 1969 a, 1970; Nelson and Lux, 1970; Burke and ten Brug-
gencate, 1971; Jack et al., 1970, 1971; Lux et al., 1970; Barrett and Crill, 1971).
The study of Lux et al. (1970) is unusual in providing the first examples of estima-
tion of L values by two independent methods on the same neuron; one method
(Rall, 1959) depends upon anatomical measurements of branch lengths and diam-
eters, together with the RN measurement; the other method (Rall, 1969 a) is en-
tirely electrophysiological, depending upon the theoretical relation between L and
the time-constant ratio obtained by peeling the sum of exponential decays. Barrett
and Cri1 (1971, plus personal communication) have recently also determined L
by both methods on the same neuron.

Dendritic trees of different size occur on a single motoneuron. Also, the larger
motoneurons tend to have both more numerous and larger dendritic trees than do
the smaller motoneurons; see Kernell (1966), and also Gelfan et al. (1970). Such
differences in tree size need not imply differences in electrotonic length L because
the larger trunk diameters imply larger X values. Thus, we have supposed that the
separate L values of the separate dendritic trees belonging to a particular moto-
neuron could be nearly the same, in spite of differences in tree size. This supposition
obtains support from the observation by Burke and ten Bruggencate (1971) that
there is no significant correlation between whole motoneuron size (as indicated by
RN) and the L value estimated for the whole motoneuron; in other words, the ob-
served range of L values was found to be the same for small motoneurons as for
larger motoneurons. Because the large motoneurons possess more large dendritic
trees, this result implies that the large dendritic trees do not have significantly
larger L values. The measurements reported by Lux et al. (1970) and by Barrett
and Crill (1971) also support this conclusion.
The early measurements of Coombs et al. (1955) and of Frank and Fuortes

(1956) provided a range of cat motoneuron input resistance values of from 0.5
to 2.5 MQ; this range was discussed in relation to dendritic anatomy by Rail (1959)
and by Kernell (1966) and Burke (1967 a). Although these last two authors found a
few larger RN values, around 6-8 Mg, most cat motoneuron input resistance values
still lie in the original fivefold range. RN values of 0.5 Mg correspond to the larg-
est motoneurons having the highest axonal conduction velocity and belong to fast
twitch, phasic-type motor units; RN values of 2-3 Mg correspond to significantly
smaller motoneurons having lower axonal conduction velocity and usually be-
longing to slow twitch, tonic-type motor units (Burke, 1967 a; cf., Wuerker et
al., 1965; Kernell, 1966).
For this fivefold range in RN, the terminal branch input resistance RBL in a tree

having about six or seven orders of branching, would be estimated in the range
from roughly 40 to 350 MQ for L = 1.0, and from roughly 65 to 750 MQ for L =
1.5-2.0, using Table I. For a dendritic tree with only three orders of branching, a
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range of smaller values, roughly 7.5-75 MQ for L = 1.0-2.0 would be estimated for
RBL ; however, so few orders of branching would be expected only in a small den-
dritic tree with small trunk diameter. For input to a midbranch (X = L/2) refer-
ence to the corresponding sections of the Appendix and Discussion suggest an
input resistance roughly in the range from 1.5 to 20 Mg, depending upon branch
order.

Because we have specified branch order, but not branch diameter, in the ex-
amples above, it is useful to consider what branch diameters are implied by dif-
ferent orders of symmetric branching. For example, a tree with a trunk diameter
of 5 ;um and 7 orders of symmetric branching would imply a terminal branch diam-
eter of 0.2 ,um; a tree with a large trunk diameter of 20 Am would imply a 7th-order
branch diameter of 0.8 Mm, or a 10th-order branch diameter of 0.2 Mm. These par-
ticular examples were chosen because 0.2 Mm corresponds to the smallest terminal
branch diameters observed by histologists (Golgi material and light microscopy
by Dr. Aitken, personal communication; electron microscopy by Doctors Reese
and White, personal communication).
With regard to steady-state voltage attenuation from a branch input site to a

motoneuron soma, it is important to note the evidence that the dendritic membrane
of cat motoneurons is normally passive. This is provided by the observation that
whenever the combination of two excitatory postsynaptic potentials (EPSP) de-
parts significantly from linearity, that departure has been a small deficit (Burke,
1967 b, pp. 1116-1120; Rall et al., 1967, pp. 1184-1185; see also Kuno and Miya-
hara, 1969). It is well known that such small deficits can be accounted for theo-
retically with the usual assumption that synaptic excitation consists of a conduct-
ance change in the postsynaptic membrane, where neither this synaptic conductance
nor the adjacent passive membrane has voltage-dependent (regenerative) proper-
ties (Martin, 1955; Rall, 1967, p. 1157; Rall et al., 1967, p. 1183; Kuno, 1971; see
also Eq. 32 below). On the other hand, if a small nonlinearity were caused by ac-
tive membrane properties (local response), one would expect an excess (not a
small deficit) of membrane depolarization; such small excess has not been reported
for normal motoneurons. However, the abnormal "partial responses" of chromato-
lyzed motoneurons have been attributed to active properties of abnormal dendritic
membrane, as contrasted with normally passive properties (Eccles et al., 1958;
Kuno and Llinas, 1970). Thus, assuming normal membrane properties, our earlier
example of a trunk diameter of 5 MAm and a seventh-order terminal branch of 0.2
Mm (with N = 6 and L = 1.5 in Table I) implies RBL/RN = 233 and a steady-state
attenuation factor of 548. If this branch terminal were depolarized by 55 mV, the
steady effect at the soma from this one steady input would be 0.1 mV.

Application to Other Neuron Types

Pioneering quantitative treatment of dendritic branching in cerebral cortex was
provided by Bok (1936, 1959) and by Sholl (1953, 1956). The variety of dendritic
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patterns in different neuron types has been emphasized and illustrated by Ramon-
Moliner (1962, 1968) and by the Scheibels (1970). Improved quantitative methods
were described and illustrated by Mannen (1966). The contributions of many
other anatomists are reviewed in the papers cited above.

In order to apply the present theoretical results to any particular neuron type,
one would like to have at least approximate answers to several questions. Does
the dendritic branching approximately satisfy the equivalent cylinder constraint?
Has an approximate range of RN values been determined experimentally? Do the
several dendritic trees seem to have similar electrotonic lengths, and, if so, has the
range of such L values been estimated from experiment? Are estimates of N, M, and
terminal branch diameter available? When the answers to these questions are affirm-
ative, branch input resistance values can be estimated by means of the present
theoretical results. If the branching does not satisfy the equivalent cylinder con-
straint, one must use the general method (Rall, 1959) for arbitrary branch lengths
and diameters. For neurons where the evidence suggests active (nonlinear, regener-
ative) dendritic membrane properties, the attenuation factor expressions of the pres-
ent paper do not apply.

Input resistance values have been measured for only a few types of neurons other
than motoneurons; nearly all of these values have been larger, indicating that the
neurons are smaller, and this accounts for the increased difficulty in obtaining re-
liable measurements with intracellular microelectrodes. Spencer and Kandel
(1961) reported an average estimate of 13 MU for hippocampal neurons. Taka-
hashi (1965) reported RN values from 1.5 to 15 MQ for pyramidal tract neurons,
reporting a mean of 5.9 MQ for 26 fast conducting cells and 10.1 MQ for 10 slow
conducting cells (see also Koike et al., 1968). Lux and Pollen (1966) obtained a
range from 4.5 to 10 MU for identified Betz cells, and a wider range of 4.4-15.2
Mg for nonidentified cortical cells (see also Creutzfeldt et al., 1964; Jacobson and
Pollen, 1968). It seems reasonable to attribute RN values around 4.5 MQ to the
larger pyramidal cells, and RN values around 10-15 MQ could be attributed to
smaller pyramidal cells. Still larger RN values would be expected for the smaller
neurons of stellate and other cell types.

Calculations involving electrotonic distance in the apical dendrite of a pyramidal
cell have been reported by Jacobson and Pollen (1968); see also Humphrey (1968)
where emphasis was more upon extracellular potentials. Although the apical
dendrite is usually much longer than the basilar dendrites, it is important to point
out that this does not necessarily imply a larger L value, because the apical diam-
eter is also larger. Furthermore, the well-known taper of apical dendritic diameter
does not necessarily mean significant departure from the equivalent cylinder con-
straint, because the apical dendrite gives off side branches as it reduces its diameter.
Jacobson and Pollen (1968) published a brief summary of their measurements
and calculations based on a large sample of pyramidal cells. They mention seeing
between 3 and 12 side branches of betwen 1 and 2 ;&m diameter along the major
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stretch of the apical shaft; they also reported apical dendritic diameter at 50 ,um
intervals along a 250 MLm length, both for the five largest pyramidal cells and for 80
small- and medium-sized pyramidal cells. It is interesting that the following ex-
amples, which are in general agreement with Jacobson and Pollen's data, also
satisfy the equivalent cylinder constraint on d12: a 2.2 ,um apical diameter with a
1.0M,m side branch emerging from a 2.6Mgm parent diameter; a 3.1 Mum apical diameter
with a 1.5 MAm side branch emerging from a 3.8 Mm parent diameter; a 4.6 Mum
apical diameter with a 2.0 Mm side branch emerging from a 5.4 Mum parent
diameter. Because of the unequal branching, dendritic input resistances would be
calculated by means of the general results in the Appendix. Also, with regard to
electrotonic length estimation, we can use Jacobson and Pollen's apical diameters
for the five largest pyramidal cells, plus their rough estimate of a 250 Mm long sec-
ondary branch tapering from 2.5 to 2.0 jMm diameter, and a 250 Mum tertiary branch
tapering from 2.0 to 1.5 um. For the larger membrane resistivity (Rm = 4,500
Q cm2) we get AX values of about 0.3, 0.4, and 0.5 for these primary, secondary,
and tertiary segments, giving a sum of about 1.2 for the apical value of L minus
the still higher order branches; for the smaller R. value of 1,500 Q cm2, the AX
values are about 0.5, 0.7, and 0.8, giving a larger sum of about 2.0 for the apical
value of L minus the still higher order branches. Unfortunately, we do not have the
corresponding information on the basilar dendrites of these same cells. For several
ranges of values, however, Jacobson and Pollen (1968) themselves obtained esti-
mates of steady-state electrotonic attenuation over the apical dendritic length.
Their results imply attenuation factors of about 3 or 4 from the major branch
point (V1) to soma, about 18 from the next branch point (V2) to soma, and about
33-50 from the next branch point (K$) to soma.

Local Synaptic Depolarization Not Proportional to Input Resistance

Because it is quite commonly believed that the amplitude of synaptic depolariza-
tion at the synaptic site should be expected to be directly proportional to the input
resistance at that site, it seems important to draw attention to several reasons why
such a strict proportionality should not be expected to hold, in general. It may be
noted, however, that such proportionality can be a useful approximation for some
situations; see, for example, Katz and Thesleff (1957), Katz and Miledi (1963),
and Katz (1966); see also Kuno (1971), and MacGregor (1968).

First, it should be noted that brief synaptic input results in a transient EPSP,
and even if the synaptic current generated at two different input sites were the same,
the EPSP amplitude would depend not simply upon the input resistance at each
site, but upon the different transient response function at each site. Furthermore,
if there is significant depolarization of different amounts at the two synaptic sites,
equal synaptic conductance transients would not produce equal synaptic current
transients (Rall, 1967). Thus, in general, when comparing two synaptic sites, the
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synaptic currents would be unequal, the transient response functions would not be
related by any simple ratio, and the resulting peak depolarizations should not be
expected to exhibit the input resistance ratio. The steady-state aspect of this prob-
lem is treated explicitly below; the transient details are included in the companion
paper.' In any case, it is clear that when the effect of synaptic input to a fine den-
dritic branch having high input resistance is compared with that of equal synaptic
input to a thicker branch having lower input resistance, the local depolarization
(at the synaptic site) is larger at the site with the larger input resistance. This has
led some (at least in conversation) to infer, erroneously, that such a larger local
effect would produce a larger EPSP at the soma. The error here consists of forget-
ting that the attenuation from the synaptic site to the soma would be increased by a
factor that is usually greater than the factor of input resistance increase (see Eq.
26); also, as noted already, the local depolarization at the synaptic site would be
increased by a factor that is likely to be smaller than the factor of input resistance
increase. The following example illustrates these two effects for a steady state; the
overall discrepancy would be even greater for transients.
For a steady synaptic excitatory conductance g. we can express the steady synap-

tic current as

(Ve - Vin)ge = Vin/Rin

Where Vf = Ef- E is the excitatory equilibrium potential, relative to the resting
potential, and Vi. is the resulting steady depolarization at the input site whose
input resistance is Rin. Rearrangement of this expression provides the following
useful expression for a single input,

(Vin/V.) = (Ring,)/(l + Ringf), (32)

where it can be seen that steady Vin is proportional to (Ring,) only when the value
of (Ring,) is much smaller than unity. Suppose, for example, that g. = 10-8 mho,
and suppose, at the soma, Rin = RN = 106 Q; then Eq. 32 gives 0.01/1.01 for
(Vin/V.). Next, suppose we place the same steady-state synaptic conductance at a
branch terminal, where, for example, Rin = RBL = 108 Q, or 100 times the pre-
vious input resistance; then Eq. 32 gives (Vin/V.) = 1/2, which is 50 rather than
100 times the previous steady depolarization. To carry this example further, con-
sider the attenuation from the branch terminal to the soma, and compare this
attenuated amplitude with that found previously for input at the soma. In this
example, RBL/RN = 100, and if we also assume L = 1.5, Eq. 26 implies an attenu-
ation factor of 235; then the steady value of 1/2 for (Vin/V.) at the input branch
terminal implies a value of (VI V.) = 0.00212 at the soma, or about one-fifth the
value obtained when the same synaptic conductance was applied directly to the
soma. To recapitulate this example, when the synaptic excitatory conductance
was shifted from the soma to a branch terminal whose input resistance was 100
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times as great as that at the soma, the steady depolarization at the synaptic site
was increased 50 times, not 100 times; also, the steady attenuation factor of 235
from the input branch terminal to the soma resulted in a soma depolarization that
was about one-fifth the reference value obtained with synaptic input at the soma.

Nonlinear Summation of Adjacent Dendritic Synaptic Inputs

It has already been pointed out elsewhere (Rail, 1967, pp. 1155-1156, 1167-1168;
Rail et al., 1967, pp. 1183-1184) that the larger depolarization at a dendritic synap-
tic site can be responsible for significant nonlinearity of synaptic summation. This
nonlinearity results because the depolarization due to one synapse reduces the
synaptic driving potential (V. - Vi.) at the adjacent synapse;8 the larger the local
depolarization, the greater the nonlinear effect. In fact, we have argued that when
an observed nonlinearity significantly exceeds the amount which could be ac-
counted for by the depolarization at the soma, it is reasonable to suppose that the
synaptic input sites must have been dendritic and sufficiently near each other for
the depolarization produced by one to sufficiently reduce the effective synaptic
driving potential of the other. Essentially the same concept has been used by Kuno
and Miyahara (1969) to account for nonlinearities they observed. Also, MacGregor
(1968) has recently stressed nonlinear effects in dendritic regions.

How Branch Input Resistance Differsfrom Core Resistance

It is of interest to examine the simple notion that branch input resistance might be
estimated as the series resistance composed of RN plus successive core resistance
along the direct line from the input branch terminal to the soma. Such a resistance
estimate can be shown mathematically (see below) to exceed the correct value of
RBL; a large discrepancy results with large electrotonic branch lengths, while
smaller discrepancies result with small L and short electrotonic branch lengths.
The physical intuitive explanation is that simple core resistance neglects the spread
of current into the sister and cousin branches, and it also neglects the leakage of
current across the dendritic membrane surface; in other words, it neglects the
branching and cable properties of the dendrites. However, when a branch is short,
little current leaks across its membrane, and consequently, the gradient of poten-
tial along its core is nearly constant; this can be seen in Fig. 4, where the slopes
along the main line are nearly constant, and the slopes in the sister and cousin
branches are rather small because they must be zero at their terminals. In this par-
ticular case, the series resistance estimate is 3.97 times RTO., which is about 17 %
larger than the correct value of RBL . A larger discrepancy results when we double
L from 1.0 to 2.0, keeping N = 6 and M = 3. Then the series resistance estimate
is 7.67 times RTac,, which is about 46% larger than the correct value of RBL .

8 In particular, if n equal synapses are active in very close proximity, we can replace gE by the product
ng. in Eq. 32 to obtain the resultant local depolarizing effect.
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To explain these results, we note first that for a length, AX = Ax/X, of a cylinder
characterized by R.-= Xri, the core resistance can be expressed riAx = R.(Ax/
X) = ROAX. Thus, the core resistance of a kth order branch segment, extending
from X = Xk to X = Xk+1 of the neuron model, can be expressed as

2kRTlc,(Xk+l - Xk)-

The proposition we wish to prove can be expressed

REBL < RN + RT {XI + E 2k(Xk+l - Xk)}, (33)

where the right side of this inequality represents the series resistance estimate com-
posed of RN plus successive core resistance segments along the direct route from
the input branch terminal to the origin (soma).

In order to prove this inequality, we refer to Eq. 22 for RBL and note a useful
property of the hyperbolic tangent: although tanh (x) approximately equals x
when x is small, it is always less than x; in fact, the first two terms of the series ex-
pansion (for values of x less than unity) give that tanh (x) = x - x3/3. Thus, we
can examine each term of the summation in Eq. 22 and express a corresponding
inequality. We do this here for k = M, k = M- 1,..., k = 1, and for the
term in tanh (L):

2(M 1) tanh (L - XM) < (L - Xm)2(m'), (34)

2(M2) tanh (L - Xv_.) < (L - XM)2 M2) + (X, - XMf1)2(M-, (35)

20 tanh (L - X1) < (L - XM) + (XM - Xm-)

+ ... + (X2 - X1), (36)

[(N - 1)/N] tanh (L) < (L - XM) + (XM,-Xm)

+...+(X2-X)+Xi. (37)

It should be noted that the sum of the column composed of the first expression to
the right of each inequality sign simplifies to 2M(L - XM); this times RT0. is equal
to the core resistance of the input branch. Furthermore, the sum of all the right-
hand terms of inequalities 34-37 yields the expression inside the brackets of pre-
vious inequality 33, and this times RT. is equal to the series core resistance along
the direct route from the input branch terminal to the origin. Thus, referring again
to Eq. 22, we can see that if we multiply the left and right sides of inequalities 34-37
by RT,, and then add RN (Eq. 11) to both the sum of the left sides and the sum of
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the right sides of the above inequalities, the result is precisely the inequality 33 which
we set out to prove.

This proof not only demonstrates that RBL is always less than this series resistance
estimate, it also provides a detailed breakdown into component inequalities which
can be examined to see how much each contributes. This, as well as several other
points, can be illustrated by reference to Table II.

Components of Input Resistance and of Core Resistance. In Table II,
the first row corresponds to inequality 34 and five subsequent rows correspond to
inequalities 35-37, for the particular case of N = 6, L = 1.5, and M = 5, with
equal increments, AX = 0.25, for all branches. Columns A and B display the com-
ponent terms of RBL/RTOO, as defined by Eq. 22. It can be seen that the highest
order term (3.92) makes the largest contribution to the numerical result; also, it
differs least from its corresponding term in column C, because the hyperbolic
tangent has the smallest argument. The fact that the two highest order terms are
nearly equal in column B, and exactly equal in column C, results from two simplify-
ing assumptions: the assumption of equal electrotonic length for the input branch
and its parent branch, and the assumption of equal daughter diameters that satisfy
the equivalent cylinder constraint. Subsequent terms in column B become pro-
gressively smaller, as the power of 2 becomes smaller in column A. The smallest
term, 0.184, in column B corresponds to RN/RTcO; it must be included to obtain
the correct total for RBL/RTOO, as defined by Eq. 22. When this total, 13.46, is
divided by the value of RN/RTO., we obtain a value of 73.1 for RBL/RN, in agree-
ment with the value given earlier in Table I, for L = 1.5, N = 6, and M = 5.
The core resistance of a kth-order branch is 2kRTOOAX, for equal electrotonic

length increments AX; see explanation in the sentences preceding inequality 33.
For the present example, the value of the core resistance divided by RT., is 8.0 for

TABLE II

COMPONENTS OF INPUT RESISTANCE AND CORE RESISTANCE
(Using inequalities 34-37 for N = 6, L = 1.5, AX = 0.25)

A B C D E F

24 tanh (0.25) = 3.92 < 4.0 = 4.
28 tanh (0.50) = 3.70 < 4.0 = 2. + 2.
22 tanh (0.75) = 2.54 < 3.0 = 1. + 1. + 1.
21 tanh (1.0) = 1.52 < 2.0 = M + X + M + M
20tanh (1.25)= 0.85 < 1.25 = x + Y4 + X + M + X
(5/6) tanh (1.5)= 0.75 < 1.50 = X + X + Y4 + X + x + x

13.28 < 15.75 = 8. + 4. + 2. + 1. + M + X
+ +

(1/6) coth (1.5) = 0.184 = 0.184 = RN/RT7O
RBLIRT. = 13.46 < 15.93 = (RN + RCORE)/RTO0
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the input branch, 4.0 for its parent branch, and 2.0 for its grandparent branch.
These values are to be found in Table II as the following column sums: sum of
column D for the input branch, sum of column E for the parent branch, and sum of
column F for the grandparent branch. Furthermore, the sum of all terms of the
right-hand side of inequalities 34-37 provides the value 15.75 for the series core
resistance divided by RT. along the direct route from the input terminal to the
origin. By adding RN/RT.O = 0.184 to this value, we obtain 15.93 for the right-
hand side of inequality 33 divided by RT. . This result exceeds the branch input
resistance value, RBL/RTOO = 13.46, by more than 18%. Even larger discrepancies
result with larger values for L.

Effect ofa Middendritic Input Location

Up to this point of the paper, we have considered only the input site at a dendritic
terminal. What is the effect of shifting the input site to a middendritic location?
One can guess, immediately, that the input resistance should be smaller than at
the terminal for two reasons: the input branch diameter is larger, and the input
current splits immediately into centripetal and centrifugal components. The exact
mathematical consequences are derived in the Appendix; comparison of Eq. A 8
with Eq. 22 shows several changes. If the input site is at X = X, on a branch of
order k = ki, Eq. A 8 has Xi in place of L in the arguments of the numerators,
and the summation runs only to k = ki instead of k = M; also, there is a factor,
cosh (L - Xi) present. Suppose, for example, that X, = 0.5 is used with N = 6,
L = 1.0, and M = 3, or M = 7. This input site is exactly middendritic in terms
of electrotonic distance. For M = 3, Eq. A 8 gives

RBX/RTOO = (1.13)(0.16 + 0.28 + 0.20) = 0.72,

which is about 21 % of the value (3.40) obtained for a terminal input site. For M =
7, Eq. A 8 gives (1.13)(0.16 + 0.28 + 0.27 + 0.39 + 0.42) or 1.72 for RBx/RTO,
which is only about 6% of the value (30.3) obtained for a terminal input site.

Effect of Unequal Branching

All of the results, so far, have been based upon the assumption of symmetric bi-
furcations along the input portion of the input tree; this makes the R. value of the
terminal branch cylinder equal to exactly 2MRT, . However, it is important to note
that these results have not depended upon symmetric branching in the other por-
tions of the input tree, or in the other trees of the neuron model; this other branch-
ing can be profuse or sparse in terms of the number of orders M, and it can be
asymmetric, provided that the equivalent cylinder constraint is satisfied, and that
all terminals correspond to the same electrotonic distance X = L from the origin.
This generality holds because the equivalent cylinder for the (noninput) sister
branch is all that enters into each superposition along the input branch lineage.

BIOPHYSICAL JOURNAL VOLUME 13 1973678



What, however, is the effect of asymmetric bifuractions along the input branch
lineage? The solution to this problem is derived in the Appendix. Briefly, the R.o
value of the input branch becomes generalized from 2MRTOO to the product, 1 2 * * .
yMRTOO, where each of these 7k is the ratio of the R. of the input carrying daughter
cylinder at the kth branch point, to the R. of its parent cylinder. For symmetric
branching, each yk would equal 2; when the input carrying daughter cylinder is
thinner than its sister branch, 7k iS greater than 2. In the expression for RBL, the
factor, 2(k-1) in the summation expression becomes replaced by a product, 1'Y2 . . .

(7k- 1); compare Eq. A 9 with earlier Eq 20. Clearly, if all of the 7k are greater
than 2, both RBL and the R. value of the terminal branch cylinder would be greater
than for the case of symmetric bifurcations; also, the attenuation factor would be
greater. On the other hand, for randomized asymmetries where 71 values less than
2 are as probable as values greater than 2, these effects will tend to cancel. Any
specific example can be computed in detail.

Effect of Unequal Trees

Although the body of this paper presents a model composed of equal dendritic
trees, the superposition method can be generalized to treat unequal trees. It is
simplest to consider different trunk diameters while preserving a common electro-
tonic length L for all trees. However, Eqs. A 9-A 12 of the Appendix show how
unequal L values can also be provided for. These expressions involve the ratio y
which equals the ratio of the combined input conductance of all dendritic trees
(from their common origin) to the input conductance of the input tree alone. Each
tree must still have branch diameters that satisfy the equivalent cylinder constraint,
but the N equivalent cylinders can now have different lengths and diameters. If
these lengths and diameters are all made equal, the ratio y reduces to N.

SUMMARY

(a) Mathematical solutions and numerical illustrations are presented for the steady-
state distribution of membrane potential in an extensively branched neuron model,
when steady electric current is injected into only one dendritic branch. The model
assumes that the dendritic membrane is passive and that the dendritic trees satisfy
the equivalent cylinder constraint on branch diameters. Although the initial deriva-
tion assumes equal dendritic trees and symmetric dendritic branching, these sim-
plifying assumptions are dispensed with in the Appendix. Also, the initial deriva-
tion limits the site of current injection to the end of a terminal branch, while the
generalization in the Appendix permits the input site to be located anywhere on
any branch or trunk of a dendritic tree.

(b) These solutions provide us with explicit expressions for input resistance at a
branch input site, and for the attenuation factor for voltage attenuation from the
input site to the soma. It is useful to express the branch input resistance relative to
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the whole neuron resistance RN measured at the soma (origin) of the model. The
attenuation factor is related to, but always greater than, this input resistance ratio.

(c) Table I illustrates many numerical examples of this input resistance ratio
and the attenuation factor, for the case of symmetric branching, with equal electro-
tonic increments per branch, and with input injected at a branch terminal; the
input resistance ratios range from about 10 to 700, while the attenuation factors
range from about 15 to 2,000, for the ranges of N, L, and M assumed for this
table. Increasing the number of orders of branching M, while keeping the number
of trees N and their electrotonic length L constant, increases both the input re-
sistance ratio and the attenuation factor approximately threefold for a two unit
increase in M. Increasing N, while L and M are held constant, increases both the
input resistance ratio and the attenuation factor in nearly direct proportionality
with the increase in N. Doubling L from 1.0 to 2.0, with N and M held constant,
approximately doubles the input resistance ratio, and increases the attenuation
factor about fivefold.

(d) The application to cat spinal motoneurons is discussed with attention to re-
cent experimental evidence showing that these neurons satisfy the various assump-
tions of the model to at least a reasonable approximation. Terminal branch input
resistance values are estimated to lie in the range from roughly 40 to 750 MQ; for
middendritic input sites the range would be smaller, roughly 1.5-20 MQ, or more
for high orders of middendritic branching.

(e) Although applicability of the theory to other neurons is handicapped by
insufficient information, the requirements are discussed and the case of pyramidal
tract neurons is reviewed.

(f) The theoretical solution in the dendritic trunk (and at the soma) is the same
whether injected current is applied entirely to one branch or is divided between
several branches of the same tree, provided that the injection sites are all at the
same electrotonic distance from the soma. This does not hold for input as a synap-
tic membrane conductance.

(g) Membrane depolarization at the site of a steady synaptic conductance input
is not, in general, directly proportional to the input resistance. While a high input
resistance does yield a larger local depolarization, this depolarization itself causes a
deficit in synaptic current, because it decreases the effective synaptic driving poten-
tial. Also, because of increased electrotonic attenuation, the large depolarization
at a dendritic synaptic site yields less soma depolarization than if the same syn-
aptic conductance input were delivered directly to the soma.

(h) It is shown that branch input resistance exceeds the input resistance at the
soma by an amount that is always less than the series sum of core resistances along
the path from the input site to the soma.

(i) Several significant generalizations of the theoretical results are provided in
the Appendix: the dendritic trees can be unequal in trunk diameter and in electro-
tonic length; daughter branch diameters can be unequal but must satisfy the equiv-
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alent cylinder constraint; the site of current injection can be anywhere on a branch
of any order.

(j) Expressions are also derived for input impedances and attenuation for AC
steady states.

APPENDIX

MoRE GENERAL THEORETICAL RESULTS

Additional Symbols Used in Appendix

Xi

Vi
RC, ins(Xi I LI R.)

RC., lp(X.,I L, R.)

RNC(X,, L, N, RT.)

ki

RBX

RB

Electrotonic distance from the origin to the point of current
injection, not restricted to X = L.
Value of V at the point of current injection.
Input resistance at the point (X = Xi) in a cylinder insu-
lated (dV/dX = 0) at the origin as well as at X = L; Eq. A 1.
Input resistance at the point (X = Xi) in a cylinder clanped
(V = 0) at the origin, but insulated at X = L; Eq. A 2.
Input resistance at the point (X = Xi) of one equivalent
cylinder of the neuron model; or parallel input resistance
of all branches (at X = X,) belonging to one dendritic
tree of the neuron model; Eq. A 5.
Branching order of the one branch which receives input
at X = Xi.
Input resistance at the point (X = Xi) on one dendritic
branch of order (ki); function of (Xi, ki, L, N, RTI,) with
symmetric branching; Eq. A 8.
More general branch input resistance at the point (X = Xi)
for nonsymmetric branching and unequal trees (branching
must still satisfy equivalent cylinder constraint); see Eq.
A 11.

7y Ratio of combined input conductance of all dendritic
trees (at their common origin) to the input conductance
of the input tree; Eq. A 10; reduces to N for equal trees.

7i Ratio of the d812 value for the trunk of the input tree to the
d3/2 value for the first-order branch which leads to the in-
put site.

7k Ratio at kth-order branch point of the parent d/2 value to
the d/2 value of the input carrying daughter branch.

Pk Product which reduces to 2(-1) for symmetric branching;
see Eqs. A 9-A 12.

AFBXlo General attenuation factor from X = Xi to soma; Eq.
A 12.

w = 2rf Angular frequency for a sinusoidal steady state.
j = (-1)1/2 For complex variable notation.
q = (1 + jWr)112 = (YI/Gm)112 Complex function of frequency; function of membrane

admittance to conductance ratio.
r = (1 + o2r2)1/2 = a2 + b2 Modulus of q2.
a = [(r + 1)/2]1/2 Real part of q.
b = [(r - 1)/2]1/2 aginary part of q.
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a = 2aL; ak = 2a(L - Xk).
= 2bL; (3k = 2b(L - Xk).

ZCL, ins Input impedance at the end (X = L) for a cylinder insu-
lated (dV/dX = 0) at the origin; Eq. A 15.

ZCL, elp Input impedance at the end (X = L) for a cylinder clamped
(V = O) at the origin; Eq. A 16.

ZN Whole neuron input impedance at the point (X = 0) of
common origin of N equal dendritic trees or equivalent
cylinders; Eq. A 17.

ZBL Branch input impedance at the end (X = L) of one termi-
nal branch of the neuron model.

Effect of Input Site Not Restricted to X = L

When the point of current injection is located at the electrotonic distance, X = Xi < L,
from the origin, the injected current divides into a centrifugal and a centripetal component.
For a single cylinder of length 2L even symmetry (compare earlier Fig. 2 A and Eqs. 4-7)
would require a source current of I/2 at X = -Xi as well as X = +Xi. This even symmetry
implies dV/dX = 0 at X = 0, and insulated ends also imply that dV/dX = 0 at X = 4L.
For positive values of X, we need to match solutions for the two regions that join at X = Xi.
We can write

V(X) = Vi cosh X/cosh Xi, for 0 < X < Xi,
and

V(X) = Vi cosh (L - X)/cosh (L - Xi), for Xi < X i L.

which provide continuity of V(X) at X = Xi, and which also satisfy dV/dX = 0 at X = 0
and X = L. In other words, these three boundary conditions have been used to determine
three of four arbitrary constants; the remaining constant Vi must be determined from the
requirement that 1/2 equal the amount of core current flowing away from X = Xi. This
can be expressed

I/2 = (V,/R,)[tanh Xi + tanh (L - Xi)]

= (V,/RA) sinh L/[cosh Xi cosh (L -Xi)].
From this it follows that the input resistance, Vi/(I/2), can be expressed

Rc, irw(Xi, L, R,) = R., cosh (L - Xi) cosh X,/sinh L, (A 1)

for a cylinder of length L insulated at both X = 0 and X = L, with steady input current
injected at X = Xi. This input resistance clearly depends upon three parameters, L, R,.
and Xi. When Xi = L, this reduces to Eq. 7; it can be seen that Xi = 0 also gives the same
result.
For the corresponding case of odd symmetry, with a source current I/2 at X = Xi, and a

matching sink current -l/2 at X = -Xi (compare earlier Fig. 2 B and Eqs. 8 and 9), simi-
lar treatment of this problem yields the input resistance

Re, cip(Xi, L, R,) = R<, cosh (L - Xi) sinh X,lcosh L, (A 2)
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for a cylinder of length L, which is clamped (V = 0) at X = 0, and insulated at X = L,
with steady input current injected at Xi . This input resistance reduces to Eq. 9 when Xi = L.
By making use of the insight contained in earlier Eq. 15 and the physical interpretation

given in the paragraph following it, the corresponding superposition for the present prob-
lem provides the solution for the injection of steady current I at the point X = Xi, in only
one ofN equal cylinders coupled at X = 0. For the range, 0 < X < Xi of the input cylin-
der, this solution can be expressed

V(X) = IRT- cosh (L - Xi) coshX+ (N - 1) sinhX'. (A3)
NsinhL+ NcoshL f

At the origin, this simplifies to

V(O) = (I/N)RT. cosh (L - Xi)/sinh L

= IRN cosh (L - Xi)/cosh L, (A 4)

where the second form makes use of Eq. 11 for RN . This result remains unaffected by the
branching considerations that follow; it is used later to obtain an expression for a generalized
attenuation factor.
When we set X = Xi in Eq. A 3, the result can be expressed V(Xi) = IRNC, where RNC

represents the input resistance for this case. This input resistance can be expressed

RNC(Xi, L, N, RTO0) = RT0 cosh (L -Xi)
cosh (X,) (N- I) sinh (X) (A 5)NsinhL NcoshL J'

for current injection at X = Xi to only one of N equal cylinders coupled at the origin. This
input resistance reduces to Eq. 14 when Xi = L; it also reduces to Eq. 11 when X, = 0.

Next, consider one order of symmetric dendritic branching, with X, > X1 . Then the odd
symmetry for 1/2 applied at Xi of the input branch, with a matching -1/2 applied at X,
of the sister branch, is responsible for a contribution corresponding to Eq. 18 but modified
as suggested by a comparison of Eq. A 2 with Eqs. 8 and 9. Here, this contribution can be
expressed

V(X) = (I/2)(2RT,) cosh (L - Xi) sinh (X - X1)/cosh (L - X1), (A 6)

and a similar contribution is provided by each order of branching for which the branch point
occurs at an electrotonic distance less than X, from the origin. Let ki represent the order of
the branch which receives the input current. The solution in the input branch, for Xk, <
X < Xi, can be written as

V(X) = IRT,, cosh (L - X,)

cosh X (N -1) sinh X
ki
E k12 Sh (XL-Xk)+ k= coh(-X) (A 7)l~sinhL N coshL k_l cs ( k

which differs from Eq. 20 (for input branch) in two respects: the factor cosh (L- X), and
the fact that the summation runs to k = ki rather than to k = M. Clearly, Eq. A 7 reduces
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to this earlier result when Xi = L, with ki = M. By setting X = Xi in Eq. A 7 and dividing
by I, we obtain the corresponding expression for input resistance

RBx = Rr. cosh (L - Xi)

osinh(X)NoI + Z sinh(AC,-kh- Xk)
N sinh L N cosh L k-1 cosh (L - k)XA

which may be compared with previous Eq. 22.

Effects of Unequal Trunks and Branches

There is no difficulty in treating trunks and branches of unequal diameter, provided that all
of the trees satisfy the equivalent cylinder constraint (preservation of E dp12 with successive
branching). This is simplest when these trees all have the same electrotonic length L. In our
derivation, the importance of N was that it represented the ratio of the summed p12 value
(for all trunks of the neuron model) to the d312 value of the trunk of the input tree, alone;
when the trunk diameters are unequal, this ratio of d/2 values can be designated9 as y. Then,
also the ratio of thedl/2sum for the "other" cylinders to that for all cylinders can be ex-
pressed as (y - 1) /1y, corresponding to (N - 1) /N of the previous derivations.

Similarly, for first-order branches of unequal diameter, we use 'yj to designate the ratio
of trunk dp/2 to the pL12 value of the input receiving branch. The equivalent cylinder con-
straint implies that the corresponding ratio for the sister branch is yl/(7y - 1) because the
reciprocal of this plus the reciprocal of 71 must sum to unity. Referring to Fig. 3 A, but with
unequal branch diameters, we can see that the input current would not be represented as
two equal source currents of 1/2, but rather, a source current of 1/71y in the input branch,
together with a different source current of (7Y - 1)I1/7 in the sister branch. Then, the
source-sink pair of Fig. 3 B must be chosen to be currents of plus and minus(7y - l)I/Yi,
in order to obtain a zero slope at the sister terminal after superposition, corresponding to
Fig. 3 C. This means that the product, (1/2) times (2RT2.o), in Eq. 18 or A 6 for the source
branch of the previous derivation, must be replaced by the product, (7y' - 1)1/7,f
times (7y1 RTOO), which equals (7y1 - 1)IRTo; it should be noted that 7yRRTo is the R. value
of this branch cylinder. Superposition of this source-sink current with the source current of
I/7y in the input branch results in a total source current of I in the input branch. Thus, with
the next order of branching, we are led to a source-sink current of (72 - 1)1/72 multiplied
by a R. value of 7y72RTj for the input branch; this product equals 71(72- 1)1RTo . With
kth-order branching, this product becomes 7172 ... (Yk -1)IRT. instead of the product,
(I/2)(2%RT,o) = 2( ')IRroo of previous Eq. 19.
Now, referring to Eqs. 20 and A 7, we are ready to write the generalized expression for

the distribution of steady potential in the input branch, allowing both for X, different from
L and for unequal trunk and branch diameters. This result can be expressed,

V(X) = IRTo cosh (L - Xi)

{coshX(A-+l) sinhX ki sinh (X - Xk) A9)
7y sinh L y cosh L + YPkcosh (LX-)X')

'The ratio y takes the more general form shown below in Eq. A 10 when dendritic trees can have
unequal L values as well as unequal diameters.
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where PI = (71 - 1), p2 = 71(72 - 1), . * * Pk = Y1Y2 ... (Yk - 1), with Yi, 'Y2 * * * k
defined as in the preceding paragraph, and where y is defined by Eq. A 10 below; also,
RTOO and L refer here specifically to the input receiving tree.

Effect of Including Trees with Unequal L Values. In order to find the effect of un-
equal L values, we refer to the analysis associated with Figs. 2 D, E, F and Eqs. 12-15, where
the superposition of unbranched cylinders was presented. There the component source
currents and sink currents were all of equal magnitude; here these component currents must
be chosen unequal in order to obtain the required superposition result. Corresponding to
the even-type symmetries of Fig. 2 D, we choose unequal source currents which satisfy the
previous condition at the origin, namely, dV/dX = 0 with a common value of V. Then,
corresponding to the odd-type symmetries of Fig. 2 E, we choose unequal source-sink com-
binations which satisfy the following conditions: each sink current (cf., Fig. 2 E) is chosen
to cancel exactly the source current (cf., Fig. 2 D) at the terminal of one of the (N - 1)
other cylinders; also, at the origin, V = 0 and the current is continuous. The result of the
complete superposition is to find that 7y, in Eq. A 9, represents the following generalized
ratio,

= (Z dj3/2 tanh L)/(d 3'2 tanh Li), (A 10)

where di and Li refer to the input receiving cylinder, and where the summation is taken over
all N cylinders, including the input cylinder. This ratio has a simple physical interpretation:
it is the ratio of the combined input conductance of all cylinders (from their common origin)
to the input conductance of the input cylinder alone (taken from this origin). When all Li
are equal, y reduces to the d12 ratio noted earlier, and when all di are also equal, y = N.

More General Input Resistance Ratio and Attenuation Factor

We can now obtain a more general input resistance RB by setting X = XT in Eq. A 9, and
dividing by the input current L If we also note that Eq. 11 for RN should be generalized by
replacing N with y, we can write our general result as the input resistance ratio,

RD coh LcX) osh (Xi) + (,y - 1) sinh (Xi,)
R = ( t) { cosh L (coth L)(cosh L)

+ 7 sinh( X)l (All)+coth Lk-IL " cosh (L - X*)}
Also, the more general attenuation factor can be expressed in two useful forms,

AFBZlO = (RB/RN)(cosh L)/cosh (L - Xi)

= cosh (XA) + (8- 1) sinh (X,)coth L

+7sinhLZkisinh (Xi-Xk). A2+ y sinh L E pk smh(s_X).( A 12 )k=1 cosh (L - Xk)
It can be seen that when X, = L, 'Y = N, and Pk - 2(k-1), Eqs. A 11 and A 12 reduce to
previous Eqs. 23 and 26.
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Generalization to AC Steady-State Impedance and Attenuation

The same superposition scheme can be used for the AC steady state. Current and voltage
become complex quantities; conductances and resistances are replaced by complex admit-
tances and impedances. For a sinusoidal angular frequency, co = 27rf, the ratio of membrane
admittance per unit area to membrane conductance per unit area can be expressed,

Yin/Gm = 1 + jwr = q2.

The cable equation for AC steady states in nerve cylinders can be expressed

d2V/dX2 - q2V = 0, (A 13)

which may be compared with Eq. 1 of the earlier derivation. The corresponding general
solution can be expressed

V(X, co) = A sinh (qX) + Bcosh (qX), (A 14)

where we note that differentiation with respect to X will introduce the complex factor q
into the expressions for slope and for core current.

Following the previous consideration of the even and odd symmetries in Figs. 2 A and
2 B, we obtain the corresponding impedances,

ZCL,ins = (R./q) coth (qL), (A 15)
and

ZCL,ClP = (R./q) tanh (qL). (A 16)

It may be noted that for zero frequency, q = 1, and these impedances reduce to the cor-
responding resistances of Eqs. 7 and 9.

In the same way, the whole neuron impedance at the origin of the model with N equivalent
cylinders or trees, can be expressed

ZN = (RTO/qN) coth (qL)

= (RN/q) tanh L coth (qL). (A 17)

Also, by noting previous Eqs. 14 and 15 together with Eqs. 22 and 23, we can write down the
corresponding expression for the ratio of branch terminal input impedance to ZN, as follows

ZBL/ZN = 1 + (N - 1) [tanh (qL) ]2

+ N tanh (qL) E 2('1) tanh [q(L - Xk)]. (A 18)
k-i

Similarly, the attenuation factor from the input terminal to the origin (soma) of the model
can be expressed as the modulus of VBL!VO , as follows

I VBL!VO = I ZBL/ZNII cosh (qL) 1. (A 19)
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In order to obtain the real and imaginary parts of these complex impedances and ratios,
we make use of the definitions of a, b, and r (see list at beginning of Appendix) as the real
part, imaginary part, and the squared modulus, respectively, of q, together with the following
two identities:

tanh (qL) = (sinh a + j sin (3)/(cosh a + cos (),

coth (qL) = (sinh a - j sin (3)/(cosh a - cos (3),

where a = 2aL, and (3 = 2bL. Making use of these definitions and identities, we can express
the real and imaginary parts of ZN as

1R(Z ) - RN(tanh L) (a sinh a - b sin ,3)
r(cosh a - cos (3)

* (Z ) RN(tanh L)(-b sinh o-a sin ()
r(cosh a -cos (3)

and the modulus can be expressed as

ZN RN(tanh L) (sinh2 a + sin2')1/2
(r)1/2(cosh a - cos (3)

Also, the ratio of the imagnary to the real part provides the tangent of the phase angle.
A similar treatment of the impedance ratio ZBL/ZN can be carried out, where we also

define ak = 2a(L - Xk) and 1k = 2b(L - Xk). Then

(N - 1)(sinh2 a - sin2'()
(cosh a + cos ()2

(k-1) sinh a sinhak - sin , sinj% 1
k-I (cosh a + cos (3)(cosh ak + cos (kJ'

g(ZBL/ZN (N - 1)(2 sinh a sin (3)
(cosh a +COcsP)2

+NE2(k-1) sinh a sin k +sinhak sin(a 1
k-i L(cosh a + cos ,B)(cosh ak + Cos Pk)J

These results can then be used to compute the modulus, ZBL/ZN I, and then the AC attenu-
ation factor defined by Eq. A 19.

Receivedfor publication 30 November 1972.
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