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We present a theory of the dependence on sequence of the
three-dimensional size of large single-stranded (ss) RNA molecules.
The work is motivated by the fact that the genomes of many
viruses are large ssRNA molecules—often several thousand nucle-
otides long—and that these RNAs are spontaneously packaged
into small rigid protein shells. We argue that there has been
evolutionary pressure for the genome to have overall spatial
properties—including an appropriate radius of gyration, Rg—that
facilitate this assembly process. For an arbitrary RNA sequence, we
introduce the (thermal) average maximum ladder distance (�MLD�)
and use it as a measure of the ‘‘extendedness’’ of the RNA
secondary structure. The �MLD� values of viral ssRNAs that package
into capsids of fixed size are shown to be consistently smaller than
those for randomly permuted sequences of the same length and
base composition, and also smaller than those of natural ssRNAs
that are not under evolutionary pressure to have a compact native
form. By mapping these secondary structures onto a linear polymer
model and by using �MLD� as a measure of effective contour length,
we predict the Rg values of viral ssRNAs are smaller than those of
nonviral sequences. More generally, we predict the average �MLD�
values of large nonviral ssRNAs scale as N0.67�0.01, where N is the
number of nucleotides, and that their Rg values vary as �MLD�0.5 in
an ideal solvent, and hence as N0.34. An alternative analysis, which
explicitly includes all branches, is introduced and shown to yield
consistent results.

branched polymer � ladder distance � radius of gyration �
secondary structure � viral RNA

Very little is known about the native size and conformation of
large (103–104 nt) single-stranded (ss) RNA molecules, a

category that includes the genomes of ssRNA viruses. This repre-
sents a challenging physical problem, because complementary base
pairing gives rise to branched secondary structures whose complex-
ity increases with length. Almost all theoretical and experimental
studies of the structures of ssRNA sequences have been devoted to
exploring the secondary and tertiary structures of smaller (101–102

nt) ssRNAs, such as tRNAs (1, 2) and ribozymes (3, 4), or of large
ssRNAs that are complexed with proteins in ribosomal subunits (5, 6).

Yet the native structures of large ssRNAs are also of biological
importance; the most prevalent form of viral genome is ssRNA, and
these molecules are necessarily thousands of bases long to code for
several proteins. There has been extensive work to determine the
secondary and tertiary structures of small (102 nt) subsequences of
ssRNA viral genomes, because of their importance in, for instance,
genome replication or packaging (7, 8). Some studies have explored
specific long-range tertiary interactions in these ssRNAs (9). By
contrast, investigations of the overall native 3D sizes of viral-length
ssRNAs have been very limited (10), and no theoretical models that
predict the sizes of long ssRNAs from their primary sequences have
yet appeared in the literature.

Spontaneous in vitro self-assembly has been demonstrated for
several ssRNA viruses (11, 12). In each case, the infectious virions
can form in a buffer solution containing only the capsid protein and
the viral genome, indicating that there is no thermodynamic barrier
to assembly. We therefore expect there cannot be a large disparity
between the native size of a viral ssRNA genome and that of its

capsid—and that, by optimizing genome size, there will be an
enhancement in the efficiency of virion assembly, and thus of viral
reproduction and infectivity. Accordingly, we argue that there has
been selective pressure on the ssRNA genome to have a size
appropriate to its protective shell.

The size of an ssRNA is determined by its tertiary structure,
which is determined by its secondary structure, which is determined
by its primary sequence. Consequently, it is natural that there are
two levels of coding in the primary sequence of a viral ssRNA
molecule. Not only do its individual genes need to code ‘‘in the usual
way’’ for their protein products, but the overall (many-gene)
sequence must give rise to a secondary/tertiary structure consistent
with a size that enables the genome to be packaged within the
capsid. Related arguments have been made in refs. 13–15. Because
of these unique selective pressures, the size of ssRNAs of self-
assembling viruses should be different from the average size of
random (or other nonviral) ssRNAs having the same length and
base composition.

Owing to their sequence-dependent branched structure, the sizes
of ssRNAs cannot be understood by using the simple models
available for linear homopolymers, such as dsDNA (see, however,
ref. 5, in which RNA size and shape are described by the config-
urational statistics associated with an ‘‘equivalent’’ semiflexible
polymer). The simplest model for a linear homopolymer is the
freely jointed chain, in which the molecule is represented as a series
of equal-length rigid links connected by flexible joints. In this
model, the two intrinsic properties that determine the size of the
molecule are the length of the links, or Kuhn length (b), and the
contour length (L), which is b times the number of links. Treating
the L �� b polymer as a statistical object yields a well known scaling
relationship for the root-mean-square radius of gyration, Rg (16):

Rg � b1��L�,

with � ranging between one-third for poor solvents, where polymer–
solvent interactions are unfavorable (leading to polymer collapse),
to approximately three-fifths for good solvents, where polymer
excluded volume effects dominate. In ‘‘ideal’’ solvents, the attrac-
tive and repulsive interactions between distant polymer segments
cancel, and � � 1/2.

For ssRNAs, L, of course, still plays a fundamental role; but
because of the dependence of secondary structure on primary
sequence, it is necessary to identify alternative intrinsic properties
of this branched heteropolymer that determine its overall size. To
address this problem, we propose a mapping between certain
coarse-grained secondary structure features of large ssRNA mol-
ecules and those of linear homopolymers, thereby enabling a
predictive correlation between primary sequence and 3D size. In
particular, we associate with an arbitrary sequence an ensemble-
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average maximum ladder distance (�MLD�) and argue that the
corresponding ssRNA molecule behaves like a linear polymer of
contour length �MLD�, and hence whose radius of gyration scales
as

Rg � b1���MLD��.

The angled brackets indicate a thermal (i.e., Boltzmann-weighted)
average taken over the entire ensemble of possible structures. The
MLD, which will be defined more precisely in Results, is a measure
of the length of the longest direct path across an RNA secondary
structure. We find that b is only weakly dependent on sequence,
whereas the �MLD� values are significantly smaller for viral ssRNA
genomes than for nonviral sequences, both random and evolved, of
the same length and composition.

Methods
Because secondary structures of large ssRNAs are difficult to
determine experimentally, and because we wish to calculate aver-
age properties of the thermodynamic ensemble of secondary struc-
tures associated with each of a large number of widely varying
sequences, we use predictions of the secondary structure made by
RNAsubopt, a program in the Vienna RNA Package, Version 1.7
(17). To evaluate robustness, we compare the results from RNA-
subopt with those from three other RNA folding programs:
RNAfold (also from the Vienna RNA Package); mfold, Version 3.1
(18); and a program we developed that employs a deliberately
simplified energy model.

RNAsubopt, RNAfold, and mfold incorporate detailed empiri-
cally derived estimates of the free energy changes associated with
loop closure and base stacking to estimate the free energies of
nonpseudoknotted secondary structures formed from GC, AU, and
GU base pairs; the restriction against pseudoknots means that, for
any secondary structure in which base i is paired to base j, no base
between i and j can pair with one outside that segment. Each base
pair thus creates a domain that effectively isolates all bases between
them from those lying outside. This ‘‘domain separation’’ is neces-
sary for all programs that fold large RNA sequences, because it
reduces an intractable problem to one whose computation time
scales as N3 (19), where N is the number of bases. Base stacking
energies are estimated from melting experiments on short oligori-
bonucleotide duplexes [double-stranded (ds) segments] and are
incorporated into a nearest-neighbor model that takes into account
the identity and orientation of adjoining base pairs. The free
energies of ss loops are determined by the type of loop (hairpin,
bubble, bulge, or multibranch); the base pair(s) closing the loop; the
number of unpaired bases in the loop; and, often, the identity and
sequence of those unpaired bases. Entropy is accounted for both
explicitly, in the entropy penalties for loop closures, and implicitly,
in the use of free energies rather than internal energies for base
stacking. The simple folding program we developed incorporates
only six stacking energies (GC:GC, AU:AU, GU:GU, GC:AU,
GC:GU, and AU:GU; no distinctions are made for orientation or
order), contains no pairing energies, and ignores loop entropy
penalties and all other details.

RNAfold and mfold determine the best possible set of paired
bases, i.e., the combination yielding the minimum free energy
(MFE); reversing this process (‘‘backtracking’’) provides the struc-
ture. Even with the exclusion of pseudoknots, the number of
possible secondary structures of a long RNA sequence is enormous
(�1.86N) (20), yielding an extremely high density of states. This,
together with the close energy spacing of structures near the MFE,
necessitates that RNA, at thermodynamic equilibrium, be viewed
not as a single MFE secondary structure but instead as an ensemble
of many secondary structures. By using RNAfold, we find that the
frequency of appearance of the MFE structure within the ensemble
is extraordinarily small, �10�0.01N for randomly permuted se-
quences [see supporting information (SI) Fig. S1].

McCaskill developed an algorithm that determines the equi-
librium partition function for an ensemble of RNA secondary
structures (21), exploiting the domain separation described
above. This procedure, which has been incorporated into
RNAfold, gives the pairing probability for every base pair that
can be formed by a sequence. From this, one can obtain
ensemble averages for any property that can be calculated
directly from the pairing probabilities.

Some of the quantities we wish to determine, such as MLD,
cannot be calculated from the pairing probabilities because they can
only be measured from the individual secondary structures. Ob-
taining an exact value for the �MLD�, therefore, would require
measuring the MLD of every secondary structure in the ensemble
and then thermally averaging. Because the number of secondary
structures involved is so large, it is impossible to do this. However,
an algorithm developed by Ding and Lawrence, first featured in
their Sfold program (22) and incorporated subsequently into RNA-
subopt (23), allows one to randomly generate secondary structures
with probabilities in proportion to their Boltzmann weight. If a
sufficient number of structures (we use 1,000) are created, one can
accurately estimate the true ensemble average of any property by
calculating the average value of this property within the generated
subset. Thus, for any property X, its ensemble-average value, �X�, is

calculated as �X� � ¥
i�1

1,000

X
i
/1,000. To verify that these subsets are

representative of the ensemble as a whole, properties were identi-
fied whose ensemble averages could be exactly determined by using
RNAfold, e.g., the percentage of bases in pairs (PBP), the maxi-
mum average ladder distance (MALD) (a measure similar to
�MLD�), and the average ladder distance (ALD) (an alternate
measure of size that explicitly includes branches). The exact ther-
mally averaged values generated by RNAfold were, for each
sequence, compared with the estimated thermal averages calcu-
lated from the representative subset generated by RNAsubopt. The
differences were insignificant: For both the random ssRNAs of
lengths 2,500–7,000 and the viral ssRNAs, the discrepancies in
�PBP�, MALD, and �ALD� averaged 0.03%, 0.3%, and 0.2%,
respectively.

This thermal averaging is not available within mfold. Instead,
after forming the MFE structure, mfold generates a list of all
possible base pairs that can be formed by the sequence, excluding
those present within the MFE structure. Then, for each of these
base pairs, the lowest energy structure containing that base pair is
determined. This results in a list of fewer than N2 structures, all
higher in energy than the MFE structure. Mfold can be configured
to output the 999 lowest energy structures from this set, and the
MFE structure. We then calculate a Boltzmann-weighted average
of any value X (AX) as:

AX � �
i�1

1,000

X
i
e�

�Gi

kT � �
i�1

1,000

e�
�Gi

kT ,

with �Gi the free energy of the ith structure relative to that of the
MFE one. Again, this average MLD (AMLD) does not represent
a true ensemble average; rather, it is a thermal average over an
arbitrary subset of the ensemble.

For all sequences, we generated both true ensemble-average
pairing probabilities with RNAfold, and representative subsets of
the thermal ensemble with RNAsubopt. To check for robustness,
ensemble-average pairing probabilities were generated with our
simplified energy model, and arbitrary subsets of the ensemble were
generated with mfold. Viral ssRNA sequences were obtained from
the National Center for Biotechnology Information Genome Da-
tabase (www.ncbi.nlm.nih.gov). Randomly permuted ssRNA se-
quences were generated by using a Fisher–Yates shuffle driven by
a Mersenne Twister random number generator (24) implemented
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in C�� (25). Yeast (Saccharomyces cerevisiae) genomic sequences
were obtained from the Saccharomyces Genome Database (www-
.yeastgenome.org).

Results
The current RNA folding programs are known to have limited
accuracy for long sequences (26). For our purposes, however, it is
not necessary that all, or even most, of the individual pairings be
correctly predicted. Rather, the predicted structures need only be
sufficiently accurate to capture the coarse-grained features that
determine 3D size. Our question therefore becomes the following:
Can the relative sizes of large ssRNAs be predicted from compu-
tational estimates of appropriate properties of their secondary
structures?

To make such estimates, we must identify a coarse-grained
characteristic of the secondary structure that dictates 3D size. The
single characteristic of a secondary structure that most obviously,
and directly, meets this criterion is its ‘‘extendedness.’’ Fig. 1 A and
B show, respectively, ‘‘typical-looking’’ viral and random ssRNAs of
about the same length. It can be seen that the random ssRNA is
strikingly more extended. The ssRNA in Fig. 1A is from a virus in
the Leviviridae family. Additional representative structures, from
the Bromovirus, Tymovirus and Tobamovirus genera, are shown in
Figs. S2 and S3.

This difference in the extendedness of secondary structures
translates into a difference in 3D size. To evaluate extendedness as

a candidate characteristic, a quantitative measure of this property
is required. Bundschuh and Hwa introduced ladder distance as a
measure of the distance between arbitrary bases in ssRNA second-
ary structures (27). The ladder distance, LDij, is the number of base
pairs (‘‘rungs’’ on a ‘‘ladder’’) that are crossed along the most direct
path in the secondary structure that connects bases i and j. Because
ds sections are essentially stiff rods, whereas ss sections are floppy,
only ds sections are counted in this measure of distance. To
characterize the overall size of RNA secondary structures using a
single quantity, we introduce maximum ladder distance (MLD),
which is the largest value of LDij for all combinations of i and j. In
other words, it is the ladder distance associated with the longest
direct path across the secondary structure. This is illustrated in Fig.
1C, with an MFE secondary structure of an arbitrary 50-nt-long
sequence, whose MLD happens to be 11. The MLD paths of this
secondary structure and of those in Fig. 1 A and B are illustrated
with yellow overlays.

To evaluate its usefulness as a predictive measure of size, we
determined ensemble-average MLD (�MLD�) values in six viral
taxa (listed in Table 1), all of whose virions consist simply of an
ssRNA genome encased within a protein shell. The viruses of five
of the taxa each have a fixed-radius spherical (T � 3 icosahedral)
shell made up of 180 copies of a single gene product, the capsid
protein. Their ssRNAs range in size from 3,000 to 7,000 nt, but the
outer diameters of their capsids are all 26–28 nm (28, 29). By
contrast, the viruses of the remaining taxon, the Tobamoviruses,
assemble into cylindrical shells of fixed radius (18 nm) but variable
length (averaging 	300 nm). Thus, unlike the genomes of the
icosahedral viruses, those of the Tobamoviruses are not required to
fit into a shell of fixed size; longer ssRNA lengths simply lead to
longer (fixed-diameter) cylinders (30). From our starting conjec-
ture, one would predict that the Tobamoviruses are not under
selective pressure to have RNAs that are particularly compact. In
addition, because all five taxa of icosahedral viruses have capsids of
approximately the same size, one would expect the divergence
between the size of the viral and random ssRNAs to increase with
sequence length.

The average composition of the individual viral ssRNAs analyzed
here (not including the Tymoviruses, whose compositions are
atypical for the viruses examined in this study) is 24.0% G, 22.1%
C, 26.9% A, and 27.0% U. However, we must account not only for
the average composition, but also the average discrepancy in
composition between bases potentially able to pair, i.e., G and C,
A and U, and G and U. This composition discrepancy (again, not
including the Tymoviruses) is 2.9 percentage points for %G � %C,
2.9 for %A � %U, and 4.0 for %G � %U (e.g., whether an
individual viral ssRNA contained 22% G and 26% C, or 26% G and
22% C, its %G � %C difference would be 4 percentage points). To
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Fig. 1. Predicted secondary structures of ssRNAs. (A) Enterobacteria phage
Qß (in the Leviviridae family) ssRNA. (B) Randomly permuted ssRNA. Each is
	4,000 nt in length and shown to the same scale. The MLDs of these structures
are 221 and 368, respectively. (These are representative of their respective
ensemble averages: The �MLD� of the phage Qß ssRNA is 240, and the �MLD�
of 4,000-base random ssRNAs is 361.) The yellow overlays illustrate the paths
associated with the MLDs (see text and the 50-nt example depicted in C). �MLD�
values were calculated with RNAsubopt; figures were drawn with mfold.

Table 1. Differences in �MLD�s and �ALD�s between viral and
random sequences

Viral taxon No. seq.*
Mean N,

nt

Mean Z
score,

�MLD�†

Mean Z
score,
�ALD�†

Bromoviridae RNA2 8 2,891 �2.3 �2.5
Bromoviridae RNA1 8 3,265 �1.4 �1.9
Leviviridae 9 3,780 �3.0 �3.5
Sobemovirus 9 4,199 �1.4 �1.9
Luteoviridae 17 5,725 �2.8 �3.1
Tymovirus 9 6,300 �2.7 �3.5
Tobamovirus 22 6,425 �0.6 �0.1

*Number of sequences analyzed.
†The number of standard deviations separating the �MLD� or �ALD� of each
viral ssRNA from the �MLD� or �ALD� predicted for random sequences of the
same length, averaged for each taxon (RNAs 1 and 2 of the Bromoviridae are
analyzed separately).
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allow for a balance between these two averages—nucleotide per-
centages and their differences for pairing bases—we chose the
‘‘virus-like’’ composition 24% G, 22% C, 26% A, and 28% U for
the randomly permuted sequences. With this composition, we
generated and analyzed 500 random sequences of length 2,500 nt,
500 of length 3,000 nt, and 300 in each of the lengths 4,000, 5,000,
6,000, and 7,000 nt. The �MLD� of each viral and random sequence
was determined with RNAsubopt.

The �MLD� values of the icosahedral viral RNAs are systemat-
ically smaller than those of the random RNAs, as can be seen in the
log–log plot of �MLD� vs. sequence length displayed in Fig. 2. Each
individual viral ssRNA is designated with a symbol indicating its
taxon. The genomes of the Bromoviruses and Cucomoviruses are
multipartite; they are divided among four different ssRNAs. Re-
sults are shown for the longest and second-longest of these, iden-
tified by convention as RNAs 1 and 2, which package into separate
(but apparently identical) capsids. Also plotted are the average
�MLD� (�MLD�) values of the various lengths of random sequences,
and their standard deviations; the result is approximately linear
(R2 � 0.993), with a slope indicating �MLD� � N0.67
0.01 over this
range.

These scaling relationships for random ssRNAs are close to the
N0.69 variation obtained numerically by Bundschuh and Hwa for a
similar measure of distance, by using an energy model in which only
Watson–Crick pairings are allowed, the interaction energy is the
same for all pairs, and entropy is ignored (27). Their measure of
distance is the ladder distance between the first and (N/2 � 1)th
base, averaged over all structures in the ensemble for a random
sequence of uniform composition and then over many sequences.

For each viral ssRNA, we calculated the Z score of the �MLD�,
i.e., the number of standard deviations separating its �MLD� from
the predicted �MLD� values of random sequences of identical
length. The latter is determined from the regression equation
plotted in Fig. 2 (see SI Text). The mean Z score of each taxon is
listed in Table 1. Those of the icosahedral viruses range from �1.4
to �3.0, indicating their RNAs have �MLD� values that are different
from and smaller than the �MLD� values predicted for equal-length
random RNAs. Further, a linear regression analysis of Z score vs.
sequence length for the icosahedral viral RNAs shows a significant
negative slope with a confidence interval �95%, implying that the
relative compactness of these RNAs, all of which are required to fit
into capsids of approximately the same size, increases with se-
quence length.

The average Z score of the �MLD� values of the Tobamovirus
ssRNAs is �0.6. It is striking that these ssRNAs, which package into
cylindrical capsids of variable length, have more extended second-
ary structures and larger �MLD� values than those of the icosahe-
dral viruses. For both the icosahedral viruses and the Tobamovi-
ruses, there appears to be a correspondence between the predicted
secondary structures of their genomes (see Fig. S3) and the size and
shape of the capsids into which the genomes must fit. We hypoth-
esize that, to facilitate viral assembly, ssRNA sequences of self-
assembling icosahedral viruses have evolved to have relatively small
�MLD� values and that these smaller �MLD� values give rise to
smaller Rg values.

These results suggest that the differences found between the viral
and random RNAs do not occur simply because the viral RNAs are
of biological origin (each is a positive-sense, directly translated
messenger RNA); otherwise, one would not see a difference
between the results for the icosahedral and cylindrical viruses. To
examine this further, we analyzed 500 ssRNAs that are the tran-
scripts of consecutive 3,000-base sections on yeast (S. cerevisiae)
chromosomes XI and XII. These yeast-derived sequences were
included to represent biological RNAs that, although evolved, have
not been subjected to selective pressures to have a particular overall
size and shape. Our findings, compiled in Table 2, show that the
�MLD� values of the yeast-derived RNAs are approximately the
same as those of the random RNAs, indicating that the differences
between the random and viral ssRNAs do not result merely from
the biological origin of the latter.

As mentioned earlier, the composition of the random RNAs was
chosen to match, on average, that of the viral RNAs as closely as
possible. However, many individual viral RNAs differ significantly
in composition from the random RNAs, raising the question of
whether the same differences in �MLD� would be seen if the viral
RNAs were each compared with random RNAs of identical
composition. To test the sensitivity to composition of the �MLD�
values of the random RNAs, we analyzed 3,000-base randomly
permuted RNAs of uniform (25% G, 25% C, 25% A, 25% U)
composition. The results, listed in Table 2, show that the �MLD� is
insensitive to small composition changes. Further, the average
composition of the yeast RNAs differs significantly from that of
both sets of random RNAs, yet their �MLD� values are approxi-
mately the same.
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Fig. 2. Log–log plot of �MLD� vs. sequence length for viral and randomly
permuted ssRNAs. The viral ssRNAs are identified by the symbols listed in the
key (Inset). The Bromoviridae analyzed here are from the Bromovirus and
Cucomovirus genera. The straight line is a least-squares fit to the �MLD� values
computed for random sequences of lengths 2,500, 3,000, 4,000, 5,000, 6,000,
and 7,000 nt; the vertical lines show the standard deviations. �MLD� values
were calculated with RNAsubopt.

Table 2. Composition-dependence of �MLD�

Type of ssRNA No. seq. N, nt

Composition,* %

�MLD�G C A U

Random, viral-like composition 500 3,000 24 22 26 28 299 
 38
Random, uniform composition 500 3,000 25 25 25 25 296 
 36
Yeast-derived† 500 3,000 19 19 31 31 300 
 46

*The randomly permuted ssRNAs of each type are of identical composition; for the yeast ssRNAs, the mean
composition is listed.

†These are ssRNA transcripts of successive 3,000-base sections of yeast (S. cerevisiae) chromosomes XI and XII.
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How likely is it that the predicted differences in �MLD� between
viral and nonviral RNAs are present in actual RNAs? RNAsubopt
and all similar programs that predict RNA structure have the
capability, in principle, to find all possible non-pseudoknotted
structures. Thus, the accuracy of RNAsubopt (its ability to properly
sample from the ensemble) depends not on what structures it is able
to predict (it can predict all of them, barring those with
pseudoknots), but rather on the energies it assigns to them, which
are determined by its energy model. As mentioned earlier, we only
require that RNAsubopt be sufficiently accurate to predict general
coarse-grained features of the RNA secondary structure, such as
�MLD�. To evaluate whether our findings are specific to RNAsubopt
(and therefore possibly an artifact of the particular energy model on
which RNAsubopt is based), we compared viral and random ssRNAs
by using mfold, which is similar to RNAsubopt but differs somewhat in
both its energy model and the structures it samples from the ensemble.
Whereas the �MLD� values generated by RNAsubopt are different
from the AMLD values generated by mfold, both showed the same
systematic difference in MLD between viral and random ssRNAs, and
approximately the same scaling relationships for random sequences
(AMLD � N0.74
0.01 for mfold, see Fig. S4).

To further test the robustness of these predictions, we com-
pared random and viral ssRNAs using our simplified RNA
folding program. This program does not determine individual
secondary structures, and consequently does not permit calcu-
lation of �MLD�. However, it does determine pairing probabil-
ities, which allows calculation of the maximum average ladder
distance (MALD) of the entire ensemble of structures, which is
the maximum value of the ensemble averages of the N2 ladder
distances associated with each N-base sequence. We find that
this program—like those discussed above, which are based on
more realistic energy assignments—also predicts systematic dif-
ferences between random and viral RNAs, giving smaller
MALD values for viral sequences than for nonviral ones (see Fig.
S5). Thus, even a highly simplified energy model that merely
takes into account nearest-neighbor interactions is sufficient to
reveal a fundamental difference between the secondary struc-
tures of viral and randomly permuted ssRNA sequences. With
this simplified model, for random sequences of lengths 2,000–
4,000, MALD � N0.66
0.02.

The folding programs we employ cannot produce structures
that contain pseudoknots. Although pseudoknots are known to
occur in viral RNAs, such as those that form 3�-terminal
tRNA-like structures (8), they are typically local (involving bases
separated by �102 nt along the sequence); accordingly, ignoring
them should not significantly affect our prediction of overall size.
Evidence has been found for longer-range pseudoknots, such as
kissing hairpins connecting bases separated by as many as 400 nt
(31), but even these are close relative to the overall length of viral
genomes. In any event, our aim is to develop a zeroth-order
theoretical model that captures the determinants of overall size,
with pseudoknots, kissing hairpins, and other details included
later as necessary.

To translate �MLD� into Rg, it is useful to map the RNA
secondary structures onto polymer models whose configura-
tional statistics are well understood, such as ideal linear and
‘‘star’’ polymers. By using the simplest idealization, as in the
freely jointed chain model discussed above, we can replace
structures like the two shown in Fig. 1 A and B by linear chains
whose effective contour lengths (Leff) are given by their �MLD�
values. To complete this mapping, we model the duplex sections
as the rigid links of the chain, and the ss bulges, bubbles, and
multibranch loops as the flexible joints that connect them. The
effective Kuhn length (beff) is thus the average duplex length in
the ssRNA secondary structure, a property that is approximately
the same (5 bp) for all sequences examined. This corresponds to
an average RNA duplex length of 1–2 nm. Because the persis-
tence length (a measure of the length scale at which bending is

observed) of dsRNA is 	60 nm (32), modeling the duplex
sections as rigid bodies is an excellent approximation. The ss
loops, on average, contain approximately six ss bases, and thus
we estimate that a typical bubble has approximately three ss
bases on each side; the persistence length of ssRNA is likely
similar to that of ssDNA, approximately two bases (33).

From this mapping between secondary structures and effec-
tive linear polymers, it follows that the Rg of an ssRNA molecule
with an arbitrary sequence should be determined by

Rg � beff
1��Leff

� � beff
1���MLD�� � �MLD��.

Combining the last equation with our earlier result, �MLD� �
N0.67, yields

Rg � �MLD�� � N0.67�.

For a non-self-avoiding linear chain, � � 0.5, in which case, Rg �
N0.34; for a self-avoiding linear chain, � 	 0.6, giving Rg � N0.40.

This approach can be broadened by mapping the ssRNA
secondary structures onto an alternate polymer model system
that accounts for all possible paths across the structure, and thus
includes all branches. For any ideal polymer, linear or branched,

Rg � � b
N2�

i�1

N �
j�1

N

Lij�
1⁄2

,

where Lij is the distance along the backbone between monomers
i and j (34). Proceeding as above, we obtain

Rg � � beff

N2 �
i�1

N �
j�1

N

Lij,eff� � � 1
N2�

i�1

N �
j�1

N

LDij�
1⁄2

� �ALD�
1⁄2,

where Lij,eff has been replaced by LDij in the second step. The
ALD is the average ladder distance, i.e., the average of the N2

pairwise ladder distances in an RNA secondary structure, and
�ALD� is its ensemble average. By using values for �ALD�
calculated exactly from the pairing probabilities generated by
RNAfold, we have repeated the analysis shown in Fig. 2. The
results are equivalent, with �ALD� � N0.68
0.01 and Rg � N0.34,
and demonstrate that the differences between random and viral
ssRNAs are preserved when branches are explicitly included (see
Fig. 3 and the Z scores of the �ALD� values in the last column
of Table 1). As with MLD, ALD is robust with respect to the
energy model. Results obtained with the simplified folding
program (�ALD� � N0.68
0.01) are shown in Fig. S6.
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Fig. 3. Same as Fig. 2, but with �ALD�, calculated with RNAfold, replacing
�MLD�. �ALD� is a measure of size that explicitly includes all branches.
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Discussion
Our goal has been to develop a generic, qualitative picture of
how the 3D sizes of large ssRNAs depend on their sequences.
Accordingly, we have identified coarse-grained features of RNA
secondary structures (�MLD� and �ALD�) that can be used to
predict variations in Rg that can be systematically compared with
experimental measurements.

Although we have focused on the role of genome size on
assembly, other properties, such as total charge (35), also play a
role. It is clear, however, that the intrinsic size of the RNA in
solution must be an important factor in determining the free
energy of encapsidation and hence in controlling the degree of
spontaneity of the process.

The smaller �MLD� values and �ALD� values of viral ssRNAs
(relative to those of random sequences) cannot be explained by
smaller values of �PBP�. With the exception of the Tymoviruses,
the �PBP� values of the individual viral ssRNAs are all close to
(within one percentage point) or larger than the �PBP� values of
random sequences. For random ssRNAs (of lengths 2,500–
7,000), the overall average value of �PBP� is 62.0; for the viral
ssRNAs the values of �PBP� are 63.3 (Bromovirus/Cucomovirus
RNA2), 64.2 (Bromovirus/Cucomovirus RNA1), 68.4 (Leviviri-
dae), 65.9 (Sobemovirus), 61.8 (Luteoviridae), 45.0 (Tymovi-
rus), and 64.3 (Tobamovirus). Note also that the Tymovirus
ssRNAs, despite their relatively low �PBP� values, exhibit ap-
proximately the same range of �MLD� and �ALD� values as those
of the comparable-length Luteoviridae ssRNAs.

The �MLD� and �ALD� of a secondary structure result from
its connectivity, which is in turn determined by its branching
properties. The viral ssRNAs form more compact secondary
structures than random ssRNAs in part because the former have
significantly more (relative to sequence length) higher-order

branches (those that are junctions for four or more duplexes).
Among the viral ssRNAs, as the number of higher-order
branches per unit sequence length increases, the Z scores of their
�MLD� and �ALD� values become more negative. We are
currently examining viral sequences to determine whether they
share common patterns that give rise to the formation of these
higher-order branches.

In predicting the native sizes of ssRNAs, we have assumed that
their secondary structures are in thermodynamic equilibrium.
Extensive in vitro studies indicate that, as ssRNAs are tran-
scribed, they typically misfold into kinetically trapped states (36).
However, more recent work, on the transcription of hairpin
ribozyme sequences in yeast, has shown that not-yet-elucidated
cofactors present in the nucleus strongly inhibit kinetic trapping
in vivo, thereby increasing the importance of thermodynamic
stability in determining the folded state of ssRNA (37). Similar
factors may be operative in the cytoplasm of host cells infected
by messenger–sense ssRNA genomes, from which viral ssRNA
transcripts are synthesized by RNA-dependent viral replicases
(as opposed to the usual DNA-dependent RNA polymerases).
These considerations suggest that the thermodynamic ensembles
we have used to estimate viral genome sizes are indeed relevant
to overall size and hence to capsid packaging efficiencies.
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