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Statistical mechanics of secondary structures formed by random RNA sequences
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The formation of secondary structures by a random RNA sequence is studied as a model system for the
sequence-structure problem omnipresent in biopolymers. Several toy energy models are introduced to allow
detailed analytical and numerical studies. First, a two-replica calculation is performed. By mapping the two-
replica problem to the denaturation of a single homogeneous RNA molecule in six-dimensional embedding
space, we show that sequence disorder is perturbatively irrelevant, i.e., an RNA molecule with weak sequence
disorder is in amolten phasevhere many secondary structures with comparable total energy coexist. A
numerical study of various models at high temperature reproduces behaviors characteristic of the molten phase.
On the other hand, a scaling argument based on the external statistics of rare regions can be constructed to
show that the low-temperature phase is unstable to sequence disorder. We performed a detailed numerical study
of the low-temperature phase using the droplet theory as a guide, and characterized the statistics of large-scale,
low-energy excitations of the secondary structures from the ground state structure. We find the excitation
energy to grow very slowlyi.e., logarithmically with the length scale of the excitation, suggesting the
existence of a marginal glass phase. The transition between the low-temperature glass phase and the high-
temperature molten phase is also characterized numerically. It is revealed by a change in the coefficient of the
logarithmic excitation energy, from being disorder dominated to being entropy dominated.
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[. INTRODUCTION able secondary structures formed by any given RNA mol-
ecule of up to a few thousand bases can be obtained readily.
RNA is an important biopolymer critical to all living sys- On the experimental side, RNA molecules of20® bases
tems[1] and may be the crucial entity in prebiotic evolution in length are available. Furthermore, the restriction to sec-
[2]. As for DNA, there are four different nucleotidésr  ondary structures can be physically enforced in a salt solu-
baseg A, C, G, andU which, when polymerized, can form tion with monovalent ions, e.g., Na so that controlled ex-
double-helical structures consisting of stacks of stablgeriments are in principle possibj&3].
Watson-Crick pairgA with U or G with C). However unlike In this work, we are not concerned with the structure
a long polymer of DNA, which is often accompanied by aformed by a specific sequence. Instead, we will study the
complementary strand and forms otherwise featurelesstatistics of secondary structures formed by the ensemble of
double-helical structures, a polymer of RNA usually “oper- long randomRNA sequencegof at least a few thousand
ates” in the single-strand mode. It bends onto itself andbases in length in practizeSuch knowledge may be of value
forms elaborate spatial structures in order for bases locatdd detecting important structural components in messenger
on different parts of the backbone to pair with each other, irRNAs which may otherwise be regarded as random from the
a manner similar conceptually to how the sequence of astructural perspective, in understanding how functional
amino acid encodes the structure of a protein. RNAs arise from random RNA sequend&d, or in charac-
Understanding the encoding of structure from the primaryterizing the response of a long single-stranded DNA mol-
sequence has been an outstanding problem of theoretical bieeule to external pulling forcg4d.4]. More significantly from
physics. Most theoretical work in the past decade has beetme theoretical point of view, the RNA secondary structure
focused on the problem of protein folding, which is very problem presents a rare tractable model of a random het-
difficult analytically and numerically3—6]. Here, we study eropolymer where concrete progress can be made regarding
the problem of RNA folding, specifically the formation of the thermodynamic properti¢g,15—2Q. Nevertheless, there
RNA secondary structures-or RNA, the restriction to sec- are many gaps in our understanding. This paper is a detailed
ondary structures is meaningful due to a separation of energgport of our ongoing effort in this regard. It provides a self-
scales. It is this restriction that makes the RNA folding prob-contained introduction of the random RNA problem to sta-
lem amenable to detailed analytical and numerical studiefistical physicists as a problem of disordered systems, and
[7]. There exist efficient algorithms to compute the exactdepicts several approaches we have tried to characterize this
partition function of RNA secondary structurf8-11]. To-  system.
gether with the availability of carefully measured free energy The manuscript is organized as follows. In Sec. Il, we
parameterg12] describing the formation of various micro- provide a detailed introduction to the phenomenology of
scopic structureée.g., stacks, loops, hairpins, gf¢he prob-  RNA secondary structure formation. We review the key sim-
plifications that form the basis of efficient computing as well
as exact solutions in some cases. We also review the proper-
*Present address: Department of Physics, The Ohio State Univeties of the “molten phase,” which is the simplest possible
sity, 174 W. 18th Ave., Columbus, OH 43210-1106. phase of the system assuming sequence disorder is not rel-
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FIG. 2. Pseudoknots in RNA structures. The base pairings indi-
cated by the arrow ina) create a pseudoknot. We exclude such
configurations in our definition of secondary structures. The short

FIG. 1. Diagramatic representation of an RNA secondary Strucpseudoknots(called “kissing hairpins) as shown in(b) do not
ture: The solid line symbolizes the backbone of the molecule whilexgntribute much to the total binding energy, and the long ones
the dashed lines stand for the hydrogen-bonded base pairs formeghown in (c) are kinetically forbidden since the double-helical

The backbone is shaped such that stems of subsequent base pajfigicture would require threading one end of the molecule through
and the loops connecting or terminating them can be clearly seefys |oops many times.

These stems form double-helical structures similar to that of DNA.
consecutive base pairs atabps that connect or terminate

evant In Sec. lll, we consider the effect of sequence disordeihese stems. In naturally occurring RNA molecules, the
at high temperatures. We show numerical evidence that thetems typically comprise on the order of five base pairs.
random RNA sequence is in the molten phase at sufficientlyfhey locally form the same double-helical structure as DNA
high temperatures, and support this conclusion by solving thgolecules. However, while the latter typically occur in
two-replica system, which can be regarded as a perturbativeomplementary pairs and bind to each other, RNA molecules
study of the stability of the molten phase. In Sec. IV, weare mostly single stranded and hence must fold back onto
provide a scaling argument, and show why the molten phaséemselves in order to gain some base pairings.
should break down at low enough temperatures. This is fol- As a secondary structure, one often considers only the
lowed by a detailed numerical study of the low-temperaturgestricted set of base pairings where any two base (igirs
regime. We apply the droplet picture and characterize th@nd (k) in a given secondary structure are either indepen-
statistics of large-scale, low-energy excitations of the secdent, i.e.,i<j<k<l, or nested, i.e.j<k<I<j. This ex-
ondary structures from the ground state structure. Our resulgludes the so-called pseudoknéés exemplified by Fig. )2
support the existence of a very weéle., marginal glass and makes analytical and numerical studies much more trac-
phase characterized by logarithmic excitation energies. Fitable. For an RNA molecule, the exclusion of pseudoknots is
nally, we describe the intermediate temperature regim@ reasonable approximation because the long pseudoknots
where the system makes the transition from the glass phagée kinetically difficult to form, and even the short ones oc-
to the molten phase. The solution of the two-replica problentur infrequently in natural RNA structur¢&3]. The latter is
is relegated to the appendixes. We present two approaches. e to their relatively low binding energies for short se-
Appendix A, we provide a mapping of the two-replica prob-quences and the strong electrostatic repulsion of the
lem to the denaturation of an effective single RNA moleculebackbone—because the polymer backbone is highly charged
in six-dimensional embedding space; this approach highand pseudoknotted configurations increase the density of the
lights the connection of the RNA problem to the self- molecule, their formation can be relatively disfavored in
consistent Hartree theory and should be most natural to fieltPw-salt solution. Similarly, the tertiary structures, which in-
theorists. In Appendixes B and C, we present the exact sololve additional interactions of paired bases, are strongly
tion. It is hoped that the two-replica solution may be helpfuldependent on electrostatic screening and can be “turned off”
in providing the intuition needed to tackle the fulreplica  experimentally by using monovalent salt solutift8]. In-
problem. deed, the pseudoknots are often deemed part of the tertiary
structure of an RNA molecule. Throughout this study, we
will exclude pseudoknots in our definition of secondary
structures. Without the pseudoknots, a secondary structure
A. Model and definitions can alternatively be represented by a diagram of noncrossing

arches or by a “mountain” diagram as shown in Fig. 3.

Il. REVIEW OF RNA SECONDARY STRUCTURE

1. Secondary structures

The secondary structure of an RNA molecule describes 2. Interaction energies

the configuration of base pairings formed by the polymer. If In order to calculate Boltzmann factors within an en-
the pairing of theith andjth bases in a polymer dfl total  semble of secondary structures, we need to assign an energy
bases is denoted hyj) with 1<i<j=<N, then each second- E[S] to each structuré&s. Each secondary structure can be
ary structureSis defined by a list of such pairings, with each decomposed into elementary pieces such as the stems of base
position appearing at most once in the list, and with the pairpairs and the connecting loop regions as shown in Fig. 1. A
subject to a certain restriction to be described shortly beloncommon approach is to assume that the contributions from
Each such structure can be represented by a diagram #sese structural elements to the total energy are independent
shown in Fig. 1, where the solid line symbolizes the back-of each other and additive.

bone of the molecule and the dashed lines stand for base Within a stem of base pairs, the largest energy contribu-
pairings. The structure shown can be divided istemsof  tion is thestacking energyetween two adjacent base pairs
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full model used in Refs[8-11] makes analytical and nu-
merical studies unnecessarily clumsy, we will examine a
number of simplified models, while preserving the most es-
sential feature of the system, namely, the pattern of matches
and mismatches between different positions of the sequence.
As in the realistic model described above, we choose our
reference energy to be the unbound state, so that each un-
bound base in a secondary structure is assigned the energy 0.
We will neglect the logarithmic loop energy, which is impor-
FIG. 3. Abstract representations of the RNA secondary structuréant very close to the denaturation transiti@2] where the
shown in Fig. 1. In(a) the solid line symbolizes the stretched-out average binding energy is close to zero, but not far below the
backbone of the molecule while the dashed arches stand for th@enaturation temperature where most bases are paired. More-
base pairs formed. Because of the no-pseudoknot constraint twover, we will radically simplify the energy rules for base
arches never crosgb) shows an equivalent representation as apairing: We neglect the stacking energies and instead associ-
‘mountain diagram.” It is a line derived from the arch diagram by ate an interaction energy ; with every pairing(i,j). Thus,
going along the backbone from left to right and going one step up
for every beginning arch, horizontally for each unbound base, and
one step down for each ending arch. Such a mountain never falls E[S]= 2 €ij @
below the baseline and comes back to the baseline athase (hhes

is the total energy of the structug&
(G_C’ A-U, or G_U), and the total energy of the stem is the Within this mOdel, it remains to be decided how to choose
sum of stacking energies over all adjacent base pairs. SindB€ energy parametets ;. One possibility is to choose each
each secondary structure is defined as a single state in o@f the base®,...,by randomly from the “alphabet” sefA,
ensemble, it is necessary to integrate out all other micro€: G. U and then assign
scopic degrees of freedom of the bases within a given sec-

ondary structure and use an effective energy parameter for  _ —Un if bi-bj is a Watson-Crick base pair
each base stacking. The most convenient one to use is the™') | u,, otherwise
Gibbs free energy of stackirjd2], which contains an enthal- 2

pic term due to base stacking, and an entropic term due to the
loss of single-stranded degrees of freed@s well as the With uy,,un,>0 being the match and mismatch energy, re-
additional conformational change of the backbone and eveapectively. Here, the value of,,, is actually not essential as
the surrounding water moleculedue to base pairing. The long as it is repulsive, since the two bases always have the
magnitudes of these stacking free energies actually depergnergetically preferred option to not bind at all. Thus the
on the identities of all four bases forming the two base pairenergetics of the system is setiny. In our numerical study
bracketing the stack and are dependent on temperature theto-be reported in Secs. Il and 1V, we will primarily use this
selves. While their typical values are on the ordekgf at modet with u,=u,m=1. We will refer to this as the “se-
room temperature, the enthalpic and entropic contributionsjuence disorder” model.
are each on the order of RgT. Thus, upon moderately in- For analytical calculations, it is preferable to treat all the
creasing the temperature from room temperature to abowt; ;'s as independentidentically distributed random vari-
80 °C, the stacking free energies become repulsive and thables, i.e., to assume
RNA molecule denatures.

The stacking free energies account for most but not all of
the entropic te?ms for a gg:ven secondary structure. There is p[{si'i}]zlgﬂjgN plei) )
an additional(logarithmig “loop energy” term associated
with the entropy loss of eactlosed loopof single-stranded  for the joint distribution functiorp[{e; ;}] of all the &; ;'s.
RNA formed by the secondary structure, as well as the enthis choice neglects the correlations betwegn and e;
ergy necessary to bend the single strand. All of these energyhich are generated through the shared Haseit is an
parameters have been measured in great deta)l When  additional approximation on the modé). However, we do
incorporated into an efficient dynamic programming algo-not anticipate that universal quantities will depend on such

rithm (to be described belowthey can rather successfully subtle correlation of the; ;'s. This will be tested numeri-
predict the secondary structures of many RNA molecules of

up to several hundred bases in lenfh-11]. —_—

In this paper, we investigate the statistical properties_of INote that, as this is a toy model, there is no reason why the
long, random RNA sequences far below the denaturatioBphapet size of the bases needs to liastiong as it is larger than
temperature. We are interested in generic issues such as th&s explained belowIndeed, the alphabet size and the choice of
existence of a glass phase and various scaling propertiehe matching rule can be used as tuning parameters to change the
Guided by experiences with other disordered systgi$  strength of sequence disorder. But in our study we choose to mini-
we believe these generic properties of the system should naiize the number of parameters and tune the effective strength of
depend on the specific choice of the model details. Since théisorder by changing the temperature.
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cally by comparing the behavior of the modg] with that of  order to generate the binding energy,’s via a rule similar

the model defined by Ed3) together with to Eq.(2): It is simple to see that for any two-letter sequence
in which the like letters repel and unlike letters attract, one
p(e)=38(e+ Uy +38(e—Upm)- (4 can always find the minimal total binding energy by pairing

o o up neighboring bases of opposite types and removing them
This distribution is chosen to mimic the random sequencgyom the sequence if no additional constraints such as the
model (2) with a four-letter alphabet, but it does not contain minimal hairpin length are enforced. As we will discuss in
any correlation between the differesit;'s. We will refer o getajl in Sec. IV A this is not a problem if the alphabet size is
this model as defined by Eqe3) and (4) as the “energy |arger than 2. Thus, in our study, we use the sequence disor-
disorder” model. _ _ _ der model with a four-letter alphabet, or the energy disorder

In the actual analytical calculations, we will go even onémodel, without enforcing the minimal hairpin length con-
step further and take the; ; to be Gaussianrandom vari-  straint. While the minimal hairpin lengttof three basesis
ables specified by known for real RNA folding, it should not change the uni-

versal properties of long RNA sequences.

ple)= ! e (e-#)%D ) 3. Partition function

V2D ’

Once the energy of each secondary structure is defined,

wheree is the average binding energy abds the variance. we can study the partition function
In this model(referred to below as the “Gaussian disorder”
model) the parametebd provides us with a convenient mea-
sure of the disorder strength. Again, universal quantities Z(N)= > e FESI (7)
should not depend on the choice of the distribution functions. SefN)

We will test this directly by performing numerical studies for of the molecule wheré)(N) denotes the set of all allowed

these Gaussian random energies, with secondary structures of a polymer &f bases, andg
_ . . ) =1/kgT. To calculate this partition function, it is useful to
=~ iUntiUpnm and D=g5(UntUmm)®  (6)  study the restricted partition functiof; ; of the substrand

from positioni to positionj of the RNA molecule. Given the
model (1), the restricted partition functions can be split up

(4)- accordin i iri it i
. . _ g to the possible pairings of positjorThis leads to
In contrast to prior numerical studi¢$8], we do not ex- the recursive equatioft5,16,23

clude base pairing between neighboring basdst(1), i.e.,
we do not set a minimal allowed length for the hairpins. -1
Setting a constraint on the minimal hairpin length would _ —Bey

make the analytical study much more cumbersome. How- Z"j_zi’j‘ﬁgi Zik-18 PiZyi g ®)
ever, in the study by Pagnast al. [18], it was argued that

the system will not be frustrate@nd hence will not form a with Z(N)=2Z,, being the total partition function of the
glassg without this additional constraint. We believe this is anmolecule. In terms of the arch diagrams introduced in Fig.
artifact of the two-letter alphabet used by Pagneinal. in  3(a) this can be represented as

chosen to match the first two moments of the distribution Eq

. +Z. . ‘\.

(€)

where the wavy lines stand for the restricted partition func-ecule than the left hand side, this equation allows one to
tions. This is easily recognized as a Hartree equation. Sincealculate the exact partition function of an RNA molecule of
the restricted partition functions on the right hand side of thidengthN with arbitrary interactionsg; ; in O(N3) time. This
equation all correspond to shorter pieces of the RNA molis accomplished by starting with the partition functions for
single bases and recursively applying E8), and is known
as a dynamic programming algorithr®,23]. This algorithm
2We did, however, repeat most of the numerical studies presente@llows one to compute numerically the partition function in-
in this paper with a minimal hairpin size of 1. Since the results arevolving all secondary structures, for arbitrary RNA mol-
qualitatively identical to the results of the simpler model presentececules of up tdN~10000 bases. It also forms the basis of
here, we do not show these data. analytical approaches to the problem, as we will see shortly.
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4. Physical observables

Apart from the partition function itself, we will use addi-
tional ohbservables in order to characterize the behavior of
RNA secondary structures. One such quantity of interest is
the binding probabilityP; ;, i.e., the probability that posi-
tionsi andj are paired given the; ;'s;

b= e PZi 1y 1Zi 151
W VARY ’

(10

whereZ;,,;, is given by the recursion equatia8) and

Zj,q1j-1 is the partition function of the sequence FIG. 4. Defiqition of_the “size profile’h; of a_secondary RNA _
bj+1bj+2- --byby--b;_,b;_;. The latter can be calculated as structure. The size prqflle measures the gxt_ensmr_l (_)f the structure if
the quantitijJrlyNH,l when applying the recursion E¢) drawn as a plar!ar dlagram'. As an intrinsic definitionhpfthat N
to the duplicated sequend®m:--byb;---by. Thus, allN(N captures this notion of Fhe size of a gecondary structure at position
—1)/2 such constraint partition functions can be calculated: We use the *ladder distance” of basdrom the end of the mol-

with the same recursion i@(N3) time. The logarithms ecule, i.e., the number of base pairs that have to be crossed when
' connecting positiori to position 1 along the folded structure as

AFi,j: indicated by the dashed line.

- kBT In Pi,j (11)
of these binding probabilities have a natural interpretation: (hy=(hynj2+1)

they can be read as the “pinching free energies,” i.e., as the

free energy cost of a pinch between positibasidj and the  as a quantity representing the overall “size” of an ensemble
unperturbed state. We will make extensive use of this conef secondary structures.

cept of pinched structures in our discussion of the low-
temperature behavior of RNA secondary structures in Sec.

IV. In our numerical investigations, we will choose as a rep-

(15

B. The molten phase

resentative of all the pinching energies for different positions

AF(N)=AF 1 np241 (12

which is the free energy cost of the largest possible pinc

that splits the molecule of lengtN into two pieces each of
lengthN/2—1.

its “size profile.” As an intrinsic measure of the size of a
given secondary structur§ we use the “ladder distance”
h;(S) between the base at position 1 and the base at positi
i, which is the number of pairingér ladder$ one has to
cross to go from a pair involving base 1 to the basee Fig.
4. It can be defined for each secondary strucgas the total
number of pairingsK, k') e S that bracket, i.e.,

hi(S)=[{(k.k") e Sk<i=<k'}|. (13

This quantity can be very easily visualized as the “height” at

1. Definition of the molten phase

If sequence disorder does not play an important role, we
may describe the RNA molecule by replacing all the binding

iglanergies(si,j by some effective value,<0. As we will see

later, this will be an adequate description of our random
RNA models at high enough temperaturest before dena-

Another quantity that describes a secondary structures ité”at'on) For real RNA molecules, this provides a coarse

grained description of repetitive, self-complementary se-
quences, e.g., CAGCAGCAG, that are involved in a num-
ber of diseasef24]. We will refer to RNA that is well de-

on

scribed by this model without sequence disorder as being in
the “molten” phase. It serves as a starting point for modeling
nonspecific self-binding of RNA molecules, and its proper-
ties will form the basis of our study of random RNA at low
temperatures.

2. Partition function

Since in the absence of sequence disorder the energy of a

positioni of the mountain representation of the secondarystryctureS depends only on the number of paired basesf

structureS as shown in Fig. ®). A quantity characterizing
the full ensemble of secondary structures is ttermal av-

this structure, we can write the partition function in the mol-
ten phase as

erage(h;) of this size profile over all secondary structures
with their respective Boltzmann factors; it can be straightfor-

wardly calculated from the probabilitie, ., as Z(N)=S %(N) exf — BeolS/]. (16)
i—-1 N
_ The partition functions of the substrands; become trans-
h))= Py - 14 . . - . ')
() gl k,E:i ok 14 lationally invariant and can be written as

Since we expect all positions in the sequence to behave in a
similar way, in our numerics we will summarize the proper-
ties of the size profile by the ladder distance from the first tovhereG(N) is only a function of the lengthl. The recursion
the middle base, i.e., we will study equation(8) then takes the form

Z;=G(j—i+2) (17)
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N-1 baseline at the end, the partition function of an RNA mol-
G(N+1)=G(N)+q E G(k)G(N—Kk), (18 ecule of lengthN is then simply that of a random walk of
k=1 steps, constrained to start from and return to the origin, in the
presence of &ard wall at the origin, with the above weights
(\/q or 1) assigned to each allowed step. This partition func-
tion is well known to have the characterisht *? behavior
g=e"Feo. (19 that we derived formally in the last sectipa5].
In this framework, it also becomes obvious why imposing
a minimal hairpin length does not change the universal be-
havior of RNA at least in this molten phase: If the minimal
. * allowed size of a hairpin is, this enforces a potentially
G(2)= 2 G(N)z™N, (200 strongpenaltyfor the formation of a hairpin, since with ev-
N=1 ery hairpins bases are denied the possibility of gaining en-
the convolution can be eliminated and the recursion equatiof'9Y Py base pairing. This tends to make branchings less
turns into a quadratic equation fa_l\_/orable and thus leads to I(_)nger stems. However, this gd-
ditional constraint translates in the mountain representation
into the rule that an upward step may not be followed by a

where

Upon introducing thez transform

z2G(z)—1=G(2)+qG3(2). (21)  downward step within the neststeps. This is clearly bcal
_ ) modification of the random walk. Thus, it does not change
with the solution universal quantities although the above mentioned suppres-
sion of branchings will require much longer sequences in
R 7—1— m order to observe the asymptotic universal behavior. For real
G(z)= 5 . (22 RNA parameters, the crossover length is very long because
q of this effect. For example, it is several hundred nucleotides

¢ for the CAG repeat, and even longer for some other repeats.
Another characteristic exponent describes the scaling of
the ladder size€h) with the sequence lengtN. As already
mentioned in its definitiod15), (h) is equivalent to the av-
G(N)=~Ao(q)N~%zg/(q) (23 erage “height” of the midpoint of the sequence in the moun-
tain picture. In the molten phase, the random walk analogy
immediately yields the result

Performing the inverse transformation in the saddle poin
approximation yields the expressiph5,17,23

in the limit of large N, with the exponen®,=3/2 and the
nonuniversal quantitieszy(q)=1+2q and Ay(q)=[(1
+2./q)/4mg¥2 12

This result characterizes the state of the RNA where a (h>o~N1’2 (24)
large number of different secondary structures of equal en- '
ergy coexist in the thermodynamic ensemble, and the parti- h .-} denotes th bl in th it
tion function is completely dominated by the configurationalW ere(--+)g denotes the ensemble average in the molten

) .phase.
entropy of these secondary structures. While the result i . : :
derived specifically for the special case;=eo, we Wil As should be clear from the coarse grained view depicted

argue below that it is applicable also to randam’s at in Fig. 4, the ensemble of RNA secondary structures in the

sufficiently high temperatures, in the sense that for lon molten phase can be mapped directly to the ensemble of

" S . Sranched polymersThese branched polymers amoted at
RNA molecules the partition function is dominated by AN o bases—1 andN of the RNA. In this contextdo=3/2 is

exponentially large number of secondary structures all hav;

ing comparableenergiegwithin O(kT)] that are smoothl known as the configuration exponent of the rooted branched
9 P gI€ . B g y olymer[26]. Additionally, from the resul{24), we see that
related to each other in configuration space. This is what w

meant by the “molten phase.” e ladder length of the branched polymer scaesNY2,
Because of the very visual analogy of the secondary struc-
tures to a branched polymer, we refer to the configurational
entropy of the secondary structures as the “branching en-
The exponent)y=3/2 is an example of a scaling expo- tropy.”
nent characteristic of the molten phase. This and other expo- Finally, the binding probabilitie®; ; defined in Eq.(10)
nents can be derived in a geometric way by the “mountain”depend only on the distan¢e—j| in the molten phase, i.e.,

representation of secondary structures as illustrated in Fig, ;=p(li—j|). The behavior of this function can be derived
3(b). Each such mountain corresponds to exactly one second-"

ary structure. In the molten phase, the weight of a secondary———

structureSis simply given byg'Sl. This can be represented in  3gor 4 real branched polymer, each branch will have a spatial
the mountain picture by assigning a weightodf? to every  extension that scales as the square root of its ladder Ieigthe
upward and downward step and a weight of 1 to every horiapsence of excluded volume interactiofihen the typical spatial
zontal step. Since the only constraints on these mountains ag&tension of a branched polymer scale®N&4, a well-known result

(i) not going below the baseline, arid) returning to the for the branched polymer in the absence of self-avoid4#6k

3. Scaling behavior
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explicitly by inserting the result Eq23) for the partition " — & - —
function into Eq.(10). Alternatively, one just needs to recog- (a) el . 20-(b) x’l/ ]
nize thatp(l) corresponds in the random walk analogy to the | ot 1 5 ,/"'
first-return probability of a random walk aftdrsteps. In @ '/"/ z x,f*’
either case, one finds the result 4" [ sequence dorder] | 4 10;/"' IT'
//; x energy disqrder 5k x energy disqrder E
© Gaussian disorder © Gaussian disorder|
| 32N )32 1o 160 N 1000 90 100 N 7000
p(l)~ TN (25

FIG. 5. Scaling in the molten phase. These two plots show the

. th t bability d ith | . 4ti dependence of several characteristic quantities of RNA secondary
I.€., the return probability decays with Increasing separdtion g ,.yres on the length of the sequence &z T=2u,,. Each plot

of the two bases as a power law with the configuration €Xshows data for three different choices of disorder according to Egs.

ponent 6,=3/2. For the pinching free energyF(N), we (2), (4), and(5). (8 shows the scaling of the average si&® and

simply setl =N/2 and obtain the dashed line is the best {it)~N°5*to a power law(b) shows

the free energy of the largest pinch as defined in @g). The
dashed line is, up to an additive constant, the logarithmic behavior
3/2X2 InN predicted in Eq.(26). The statistical fluctuations are

. . . . . smaller than the size of the symbols in both plots. All plots suggest
for largeN, i.e., it scalesogarithmicallyin the molten phase. that the behavior of RNA secondary structures at high temperatures

This lo.gamhmlc dependence ”.‘ere.'y reflects .the IOSS, Ns well described by the molten phase picture and independent of
branching entropy due to the pinching constraint and is g gisorder.

manifestation of the configuration exponeht=3/2.

Ill. EFFECT OF SEQUENCE RANDOMNESS:

HIGH-TEMPERATURE BEHAVIOR tion at the relatively large temperature lg§T=2u,,, and av-

erage the values obtained over many disorder configurations.
There are in principle three different scenarios for theln order to keep the numerical effort manageable, we average
behavior of long random RNA sequencés. Disorder is  over 10000 random sequences fhire {10,20,40,80,160,
irrelevant at any finite temperature, so that the molten phasgzq, over 2000 sequences fof=640, and over 1000 se-
description presented in Sec. Il B applies to long RNA mol-quences folN=1280 andN = 2560.
ecules at all temperature@.) Disorder is relevant at all tem- Figure 5 shows the results; disorder-averaged quantities
peratures, and the molten phase description is completelyre denoted by an overbar throughout the text. We see that

inadequateiii ) There is a finite temperatuiig, above which TR . .
the molten description of random RNA is correct, while be-th—e data for(h) follow a power law with a fitted exponent

__NJ054 ;
low T4 a qualitatively different description is needed. In ac—<h> N, with the exponent value decreasing for larger

cordance with the statistical physics literature, we will referN'S- This result is consistent with the prediction Eg4) for
to the nonmolten phase as the glass phase, Tands the the molten phase. Also, the pinching free energy follows the

glass transition. The purpose of the study is to determin@reédicted logarithmic behavior Eq6) without any notice-

characterize the glass phase if eitkiér or (i) occurs. together, these results indicate that the three models of dis-
In this section, we study the high-temperature behavioPrder belong to the same universality class, i.e., the molten

and demonstrate that the molten phase is stable with respeghase description of the uniformly attracting RNA, at high

to weak sequence disorder. This ensures that the molten demperatures.

scription of RNA given in Sec. II B is at least valid at high

enough temperatures, thereby ruling out scenérijp We

will address the question of whether there is a glass phase at

low but finite temperatures in Sec. IV.

B. The replica calculation

Now we will establish the stability of the molten phase
) against weak disorder by an analytical argument. We will use
A. Numerics Gaussian disorder characterized by E@.and (5). As we
Before we engage in detailed calculations, we want tdave shown above, the different microscopic models of bind-
convince ourselves with the help of some numerics that weald energy all yield the same scaling behaviors. With the
disorder does not destroy the molten phase. To this end, wéncorrelated Gaussian energies, it is possible to perform the
study the observables introduced in Sec. Il A4. We generatensemble average of the partition functihof n RNA mol-
a large number of disorder configurations, i.e., interactiorecules sharing the same disorder. The disorder-averaged free
energiese; j, using the three models introduced in Sec.energy can then in principle be obtained via the “replica
[l A2: sequence disorder, energy disorder, and Gaussian digfick” InZ=lim,_,(Z"—1)/n, by solving the n-replica
order as described by E¢R), Egs.(3) and(4), and Eqs(3) problem[27].
and (5), respectively, withu,=u,m=1. Then, we calculate The n-replica partition function can be written down for-
the observableg) and AF(N) for each disorder configura- mally as
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FIG. 6. Grouping of two RNA structures according to their com-
mon bonds. Each pair of RNA secondary structures like the one on

n the left hand side can be classified according to the bonds that are
=> >[I exd—pelsd] common to both structurgepen circles. These common bonds by
{S1} {Spt k=1 themselves form an RNA secondary structdright hand side.

Thus, the sum over all pairs of secondary structures can be written
as the sum over all possible secondary structures of the common
bonds. The weight of each common bond structure is then given by
the interaction energies of common bonds and the summation over

1 n n
xexr{iﬁzDE > Isinsi
k=11=1

n all possibilities of arranging noncommon bonds in the given
= E E H qlskl H "q\SkﬂSI\ common-bond structure. Since noncommon bonds have to be com-
s} {sy) k=1 1<k<i=n patible with the common-bond structure, the latter sum factorizes

into independent contributions of all the loops of the common-bond
where structure(gray circles). Each such contribution depends solely on
. the number of noncommon-bond bases in each of these loops.
q=exp(— Be+3B°D) andf=expB?D) (27

. s . will find that the two-replica system has a phase transition
are the two relevant “Boltzmann factors.” This effective par- between the molten phase in which the two replicas are un-
tition function has a simple physical interpretation: It de- ., re|ated and a nontrivial phase in which the two replicas
;cnbe_sE Rf'f\IA molecules subject to af)mogleneogjattrac- are completely locked together in the thermodynamic limit.
tion with effective interaction energyo=e —; 5D between ¢ yransition occurs at a finite temperatrgD) which
any two bases of the same molecule. As before, this eﬁec“"ﬁpproaches zero 43—0. Thus. the effect of weak disorder
attraction is characterized by the factpin addition, there is  ;&i - ajevant at finite ten".nperatL;res
an inter-replica attraction characterized by the fa&dior Let us denote the two-replica partition functid for two

each bondsharedbetween any pair of replicas. The inter- P
replica attraction is induced by the same sequence disordg'Fr"’mdS each of lengiN by G(N+1;7), where we keep the

shared by all replicas. For example, if the base compositior%iependence og implicit. Then,
in one piece of the strand matches particularly well with
another piece, then there is a tendency to pair these pieces GIN+17G)= 2, qlSi*ISlg S0l (28)
together in all replicas. Thus, the inter-replica attraction can S;,S,€ Q(N)
potentially force the different replicas to “lock” together,
i.e., to behave in a correlated way. Indeed, the distribution offhe key observation which allows us to solve the two-replica
inter-replica correlations, usually measured in terms ofproblem is that, for each given pair of secondary structures,
“overlaps,” is a common device used to detect the existenceghe bonds shared by two replicésereafter referred to as
of a glass phase in disordered systg28). “common bonds’) form a valid secondary structure by
The full n-replica problem is difficult to solve analytically. themselvegsee Fig. 6. Thus, we can rearrange the summa-
We will examine this problem in the regime of smd@l  tion over the pairs of secondary structures in the following
aiming to resolve the relevancy of disorder in a perturbativeway: We first sum over all possible secondary structures of
sense. Since the lowest-order term of the fully random probthe common bonds. For a given configuration of the common
lem in a perturbation expansion corresponds to the two- bonds, we then sum over the remaining possibilities of in-
replica (n=2) problem we will focus on the latter in order to trareplica base pairings for each replica, with the constraint
study the smalB behavior of the full problem. The solution that no new common bonds are created.
of the two-replica problem will also illustrate explicitly the Note that the common bonds partition the diagram into a
type of interaction one is dealing with, thereby providing number of “bubbles,* shown as the shaded regions in Fig.
some intuition needed to tackle the full problem. It turns out
that the two-replica problem can be solved exactly. Here, we
outline the salient features of the solution. Details of the “The two ends of the sequence must also belong to a bubble if
calculation and analysis are provided in the appendixes. Wkhey are not common bonds.
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6. Due to the exclusion of pseudoknots from the valid sec- ForqG<Tq., we haved=3 and
ondary structures, only bases belonging to the same bubble o
can be paired with each other. Thus, the two-replica partition {=(1+2\9)2+q%(G—1)g41(q), (34

function can be written as
where

g<N+1;'q>=SE @@ I o+,

e Q(N) bubbiei of S gl(q): E GZ(N)(1+2\/a)_2N, (35)
(29 N=1

where the factog?g is the weight of each common bond, according to Egs(B10) and (B12). In this regime, the two-
and Q;(l;+1) is the sum of all possible intrareplica pairings replica partition functiong is essentially a product of two
of the ith bubble ofl; bases inS with the restriction that single-replica partition function&. Compared to Eq(23),
there are no common bonds. we can identifyd as 20,, and { as a modified version of
It should be clear tha®; depends on neither the number z3=(1+2./q)2. Since there is no coupling of the two repli-
of stems branching out from the bubbleor the positions of cas beyond a trivial shift in the free energy per lendth,
these stems relative to the bases within the bubble. It de-k,TIn¢, we conclude that the disorder coupling is irrel-

pends orSonly through the number of basgsn the bubble  evant. Hence the two-replica system is in the molten phase in
and is given by a single functio@ independent of. This  this regime.

function can be written explicitly as Forg>%., we haved=3/2 and{ is given as the implicit
solution of an equation involving only single-replica parti-
ol+1)= >  gsltls (30) tion functions as shown in Eq#B17) and (B20). Here, the
$1.5,0(1) partition function of the two-replica system is found to have
$1N$=0 the same form as that of the single-replica system in Eq.

(23). This result implies that the two replicas are locked to-

gether via the disorder coupling, and the molten phase is no
' longer applicable in this regime.

Of course, as already explained above, only the weak dis-
order limit (i.e., B2D<1) of the two-replica problem is of
relevance to the full random RNA problem. In this lim,

With Egs. (29) and (30), the two-replica problem is re-
duced to an effectivesingle homogeneous RNA problem
with an effective Boltzmann weighy?g for each pairing,
and an effective weigh® for each single-stranded loop. As
described in Appendix A, this problem becomes formally
analogous to that of an RNA molecule in the vicinity of the 2 oo : .
denaturation transition, witkQ being the weight of a single ~1+5°D while . is found by evaluating Eq33) with g

polymer loop fluctuating in six-dimensional embedding ~e P It can be easily verified thdj.>1 as long ag is

space. The competition between the pairing energy and tHiite: Thus, in the weak disorder limit, we hade<qc, in-
icating that the molten phase is an appropriate description

bubble entropy leads to a phase transition for the two-replic

problem, analogous to the denaturation transition for a singl&°" the random RNA. Unfortunately, the two-replica calcula-
RNA molecule. tion cannot be used in itself to deduce whether the molten

The details of this transition are given in Appendix B phase description breaks down at sufficiently strong disorder

where the partition functiof29) is solved exactly. The exact ©F loW témperature. Based on this analysis, we cannot con-
solution exploits the relation clude whether the type of phase transition obtained for the

two-replica problem is present in the full problem.

Q(N)=g(N;§=0), (3D
IV. EFFECT OF SEQUENCE RANDOMNESS:
which follows from the def|n|t|0n$28) and (30), and turns LOW-TEMPERATURE BEHAVIOR
Eqg. (29 into a recursive equation fay. The solution is of
the form Having established the validity of the molten phase de-
scription of random RNA molecules at weak disorder or high
G(N;G)~N"MN(q,9) (32)  temperatures, we now turn our focus onto the low-

. i ) temperature regime. First, we will give an analytical argu-
for large N, with two different forms forf and{ depending  ment for the existence of a glass phase at low temperatures.
on whethef@ is above or below the critical value Then we will present extensive numerical studies confirming

L this result and characterizing this glass phase.
ac: 1+

= (33
N A. Existence of a glass phase
0?2 NG*(N)(L+2yg) 2N~ j .
N=1 We will start by showing that the molten phase cannot

. N . persist for all temperatures down To=0". To this end, we
Here G(N) is the molten phase partition function, whose || assume that long random RNA is in the molten phase for

large N asymptotics is given by Eq23) and whose values g temperatures, i.e., that the partition function for any sub-
for small N can be calculated explicitly from the recursion gtrang of large length>1 is given by

Eqg. (18). Thus, the actual value @, can be found for any
giveng. Z(L)=A(T)L *exd — Bfo(T)L] (36)
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whereF .ieqiS the free energy of the ensemble of structures
in which the two complementary segments are paired. The
latter is the sum of the free energy of the paired segments
and those of the two remaining substrargls, ,...,b;_ of
length L;=j—i—2l+1 and bj,,,....0;_; (wrapping
around the end of the moleculef lengthL,=N+i—j—1,

ie.,

FIG. 7. Finding a good match in an RNA sequen@.shows 3
the positions of two pieces with exactly complementary bases, one F paired= —~ lum+(N=21)fo+ 3k T[IN(Ly) +In(L2)].
of which is between positions 2 aidi2 and the other of which is (41)

between positionbl/2+2 andN. Such a piece of length~In N can The free energy yncneqin the presence of the pinch is, by

be found for almost all sequencdb) shows how restricting con- th i fth It h the int " f
figurations to those in which the good match forms Watson-Crick € assumption of theé molten phase, the intéraction energy o

base pairs splits the molecule into two loops, which can still formth€ pinched base palr;-byy,+1 plus the molten free energy
base pairs within the loops independently of each other. of the substrand,,...,by> and the molten free energy of the
substrandyys4 2,....by, i.€., according to Eq36)

with some effective temperature-dependent prefatir)

and free energy per lengthy(T). Then we will show that

this assumption leads to a contradiction below some teMgp to terms independent b Combining this with Eqs(39),

peratureT* >0. This contradiction implies that the molten (40), and (41), we get

phase description breaks down at some fifije=T*. To be

specific, we will consider the sequence disorder m¢2ein AF(N)=3kgT[2InN=InLy—InL,]+I[un+2 fo(T)].

this analysis. (43
The quantity we will focus on is again the free energy . )

AF(N) of the largest possible pinch. Under the assumptior}/Sing the result38) and the fact thatt , andL are typically

that the random sequences are described by the moltdifoportional toN, we finally obtain

phase, it is given by

Fpincheffo(T)N-l—ZX%kBTlnN (42

AF(N)=[Up+2 fo(T)IA"LINN (44)
AE(N)= 2
AF(N)=3kgTInN (37) for largeN. This is consistent with Eq37) only if
for large N and all T, independentlyof the values of the SkeT=N"Yu,+2 fo(T)]. (45)
effective prefactoA(T) and the free energy per length(T)
[see Eq(26)]. Now, fo(T) is a free energy and is hence a monotonically

On the other hand, we can study this pinching free energylecreasing function of the temperature. Thus the validity of
for each given sequence of bases drawn from the ensembiie inequality(37) depends on the behavior of its right hand
of random sequences. For each such sequence, we can logige at low temperatures. AB— 0, the inequality can hold
for a continuous segment 6&N Watson-Crick paird;-bj,  only if o=1+2 fo(T=0)/u,,<0. Since the average total
Di1-bj_1,....0i1j—1-b;_ 1 where the basels;,....bj 1  energy atT=0 is u,, times the average total number of
are within the first half of the molecule and the basesmatched pairs of a random sequence, thég(2)/u,, is sim-
b;_j4+1,...,0j are in the second haltee Fig. 7a)]. For ran-  ply the fraction of matches andis the fraction of bases not
dom sequences, the probability of finding such exceptionahatched. Clearlys cannot be negative, and the inequality
segments decreases exponentially with increasing lehgth (37) must fail at some finite temperature unless 0.

with the largest in a sequence of lengtN being typically We can make a simple combinatorial argument to show
. that in most cases the fractianof unbound bases must be
I=N""InN. (38 strictly positive. To illustrate this, let us generalize the “al-

o phabet size” of the sequence disorder model of Sec. IIA2
For exact complementary matches, the proportionality confrom 4 to an arbitrary even integér=2. We will still adopt

stant is known to ba.=1In2 [29]. the energy rulg2) where each of th& bases can form a
Now, we calculate the pinching free energy “Watson-Crick” pair exclusively with one other base. Let us
estimate the number of possible sequences for which the
AF(N)=Fpinched Funpinched (39  fraction of unmatched basesis zero in the limit of long

sequence lengtN at T=0. Since afl =0 only Watson-Crick
by evaluating the two terms separately. The partition funcywc) pairs can be formed, we need to count only the number
tion for the unpinched sequence contaaseastall the con-  of sequences for which the fraction of WC paired bases is 1.
figurations in which the two complementary segmentsThis means that, except for a subextensive number of bases,
bi,....0i+ -1 andbj_;,4,...,b; are completely pairefisee 3|l have to be WC paired to each other. From the mountain
Fig. 7(b)]. Thus, picture (Fig. 3), it is clear that the number of possible sec-
ondary structures for such sequences must scal& asiffce
F unpincheds F paired (400 the fraction of horizontal steps is nonextensive, so that at

031903-10



STATISTICAL MECHANICS OF SECONDARY . .. PHYSICAL REVIEW B5 031903

each step there are only the possibilities for the mountain to 100 T T
go up or down. For each of thé/2 pairings in one of these /ﬁ//'f?
2N structures, there ar& ways of choosing the bases to /8/0
satisfy the pairing. So for each structure there KM ways ,g/ -
of choosing the sequence that would guarantee the structure. A “g/‘
Since there are a total &N sequences, it is clear that the v 1°F .--';&;7 E
fraction of sequences with albut a subextensive number) of ..‘.--';// _
WC pairs becomes negligible if S #E n sequencelisorder
& x energy disorder
28 o Gaussian disorder
(2 JK)N<KN, (46) # , ,
l10 — 100 — .““1.000

Thus, forK=6, we must haver>0. N

For K=2, the left hand side of Eq46) grows faster than FIG. 8. Scaling of the average sizk) of secondary structures
its right hand side. This reflects the absence of frustration im the low-temperature phase with the lendgthof the sequences.
this simple two-letter model as already discussed at the enthe plot shows data for three different choices of disorder accord-
of Sec. IA2. One way to retain frustration is to introduce ing to Egs.(2), (4), and(5) at kgT=0.0251,,. The average system
additional constraints, e.g., the minimal hairpin length usedize follows a power law. However, the best fit of the data for
in Ref. [18]. With this constraint, a structure with a subex- sequence disorder a&=160 to a power law indicated by the
tensive number of unmatched bases can contain only a sudashed line leads to an exponent(bj~N%%. The corresponding
extensive number of hairpins. In the mountain picture, thigits for energy and Gaussian disorder yield exponents(tof
means that, except for a subextensive number of steps, thereN®®® andN®%5, respectively. This is distinctly different from the
is only one choice to go up or down at every step. Thissquare root behavior of the molten phase indicated by the dotted
changes Eq(46) to KN2<KkN |t ensures frustration since line. The comparison of this plot with its counterpart in Figa)5
o>0 for all K. Since a minimal length of three bases is suggests that the behavior of RNA secondary structures at low tem-
necessary in the formation of a real hairpin, real RNA isperatures is different from the molten phase.
certainly frustrated by this argument. The random sequen
model that we study in this paper is marginal sikce 4 and

there is no constraint on the minimal hairpin length. In thise{10 20,40,80,160,320 over 2000 realizations forN
case, all the prefactors on the two sides of &®) (e.g., the — 640, and over 1000 realizations fidre {1280,2560.

ore st b ok o secount. We wil mot andortake thie. . Figure 8 shows the results for the ladder sia of the
: structures for the three models of disorder. The ladder size

effort here, but will verify numerically in Sec. IV C that still scales algebraically with the length of the sequences,

=0 in this case also. with numerically determined exponents ranging frgim
In all cases witho> 0, it follows that there is some unique — . : .
aue_Noss (o (h)~NO®° for the different choices of disorder.

temperaturel™* below which the consistency conditidd5) .
breaks down, implying the inconsistency of the molten phasd N€ results are clearly different from the square root behav-
dor (dotted ling expected of the molten phase. Thus this

assumption in this regime. From this we conclude that ther

must be a phase transition away from the molten phase Lesult reaffirms our expectation that the secondary structure
some critical temperatur€,=T*>0. The precise value of of a random RNA sequence at zero temperature indeed be-

the boundT* depends on, which in turn depends on the longs to a phase that is different from the molten phase.

stringency of the condition we impose on the rare matching
segments. For instance, if we relax the condition of exact
complementarily between two segments to allow for matches A key question in characterizing the thermodynamic prop-
within each segment, then the constanwill be reduced erties of disordered systems is whether the zero-temperature
from In2 and the value off* will increase. This will be behavior persists for a range of finite temperatures. If it does,
discussed more in Sec. IVC. then the system is said to have a finite-temperature glass
phase. One way to address this question is to study the over-
lap between different replicas of the RNA molecule as men-
tioned earlier. If a nontrivial distribution of these overlaps

The above argument does not provide any guidance on thgith significant weight on large overlaps persists into finite
properties of the low-temperature phase itself. In order taemperatures, then the finite-temperature glass phase exists.
characterize the statistics of secondary structures formed ahis approach was taken by previous numerical studies
low temperatures, we redo the simulations reported in Se¢16,18-20. Unfortunately, the results are inconclusive and
A at kgT=0.0251,,, setting the energy units again by even contradictory due to the weakness of the proposed
choosinguy,= umm= 1. At this temperature, an unbound basephase transition—only the fourth temperature derivative of
pair is penalized with a facte® relative to a Watson-Crick the free energy seems to show an appreciable singularity.
base pair, and a non-Watson-Crick base pair is penalizeMoreover, due to limitations in the sequence lengths probed,
even more. Thus, only the minimal energy structures contribit was difficult to get a good estimate of the asymptotic be-
ute (for the sequence lengths under consideration)hared  havior of the overlap distribution.

e may regard this effectively as @at=0. As in Sec. Il A,
we average over 10000 realizations of the disorderNor

1. A criterion for glassiness

B. Characterization of the glass phase
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In our study, we adopt a different approach based on the
droplet theory of Huse and Fishig0]. In this approach, one (@
studies the “large-scale low-energy excitations” about the
ground state. This is usually accomplished by imposing a
deformation over a length scale>1 and monitoring the ~ %
minimal (free) energy cost of the deformation. This cost is - @
expected to scale d¥ for largel. A positive exponenivw
indicates that the deformation cogtows with increasing
size. If this is the case, the thermodynamics is dominated by
a few low (free) energy configurations in the thermodynamic ) - N
limit, and the statistics of the zero-temperature behavior per_-rhglt\ibgt;azzgogr:sr? ?OOfe?] r:i'rré'lgsfloirneg)ézggdgfig{hpe'nif]z'ir_'g'
sists into finite temperatures. On the other hand, if the expo- P P

cated minimal energy structuta). Thus, forcing these two bases to

nentw is negative, then there are a large number of conflgube bound by pinching does not affect the structure at all. Pinching

rations that have low overlap with the ground state bUtof (i,j), on the other hand, will lead to a local rearrangement

whose energigs are similar to ,th_e ground state energy in tr‘@haded regionof the structure as shown iib). The effect of such
thermodynamic limit. At any finite temperatufg a finite 5 hinch depends on the number of base paris of the minimal energy

fraction of these configuratiorige., those withinO(kgT) of  strycture with which the pinch is incompatible. As indicated by the

the ground state energill contribute to the thermodynam-  arrow in (a), this number is given by the ladder distarftg be-
ics of the system. The zero-temperature behavior is clearlyveeni andj; in this exampleh; ;=3.

not stable to thermal fluctuations in this case, and no thermo-
dynamic glass phase can exist at any finite temperature. T
analysis of the previous section indicates the existence of

glass phase; thgs we expect to ﬁnd. that .the excitation eNerBated by the shading. As we move the pinch further away

increases with increasing defo_rmat!on.sme. . . from the ground state pairing, we systematically probe the
It should be noteq that this criterion for glassiness 'Seffect of larger and larger deformationprovided that a

purely thermodynamical in nature and does not make an}Sinch induces only local deformation as we will sHoBec-

3tatem_ent”abou¢|n$|tllcs ﬁ_;_}{stem tlhat |sbnot_glasbsyttherm;)r; ond, the minimal energy or the free energy of the secondary
ynamically can Stll exnibit very large barrers between theqy oy reg subject to the pinch constraint is easily calculable

many practically degenerate low-energy configurations, lea aumericall ; ; :

, S 9 . y by the dynamic programming algorithm as
Ing to aklnetlg: gIas_sA SIU.dy of the kinetics of RNA, e.g., N shown in Eqs(10) and(11). Third, the pinching of the bases
terms of barrier heights, is naturally dependent on the choicg, . sanse mimics the actual dynamics of the RNA molecule
of allowed dynamical pathways to transform one RNA S€Cat low temperatures. In order for the molecule to transform

ondary structure into another Qrﬁel_ﬂ‘ Since this is a g5 one secondary structure to another at a temperature
highly non_tr|V|aI problem, we will restrict oursel_ves to ther- where all matching bases should be paired, the bases have to
modyr)amlcs and use Fhe droplet picture explained above 4ake local rearrangements of the secondary structures in
our criterion for the existence of a glass phase. much the way depicted in Fig. [B3]. Thus, the pinching
energy provides the scale of variation in the local energy
landscape for such rearrangemehinally, “pinching” of a
According to the criterion for glassiness just presentedreal RNA molecule can be realized in the pulling of a long
our goal is to determine the value of the exponenfor  molecule through a porg85].
random RNA molecules numerically. To this end, the choice A key question as to the utility of these pinch deforma-
of large-scale low-energy excitations needs some carefulons is whether the deformation is confined to the local re-
thought. As in every disordered system, there is a very larggion of the pinch as depicted in Fig. 9 or whether it involves
number of structures which differ from the minimal energy a global rearrangement of the structure. To test this aspect,
structure by only a few base pairs and which have an energywe numerically study the changes in pinch free energy as a
only slightly higher than the minimum energy structure.function of the “size” of a pinch. Here, the definition of the
These structures are clearly not of interest here. Instead, Wsinch size needs some thought. Consider a specific sequence
need to find a controlled way of generating droplet excita.whose minimal energy structure $ . If the binding partner
tions of various sizes. of basei is base’ in the minimal energy structure, a natural
We propose to use the pinching method introduced in Segneasure for the size of a pinch,|) ¢ S* with i<j<i’
IIA4 as a way to generate the deformation, and regard the,ould be the ladder distandg ; between baseand bas;
difference between the minimal energy pinched structure and
the ground state structure as the droplet excitation. There are———
several desirable features about these pinch-induced deforsyhiie 1ocal rearrangements will proceed only by forming differ-
mations. First, they give a convenient way of controlling theent watson-Crick base pairs, we will in our study determine the
size of the deformation. Ifi(i") is a base pair that is bound pinching free energies fall pinches irrespective of whether or not
anyway in the ground state, pinching this base pair does nahey are Watson-Crick base pairs. Since we take the ensemble av-
have any effect andF; ;,=0. If we pinch basé with some  erage over many sequences this amounts only to an irrelevant con-
other basg #i’, then we force at least a partial deformation stant contributione;;) —un=¢— Uy, to the pinch free energies.

L

Qﬁ the ground state, for bases in the vicinityipi’, andj.
#his is illustrated in Fig. 9 with the deformed region indi-

2. Droplet excitations
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10 This behavior explicitly shows that the pinch deformation is
(a) alocal deformation. In particular, we see that for sméfil's
the free energy cost independenbf the overall lengtiN of
£ the molecule.
= Py It is interesting to see at whath the entire sequence is
g i e Ae N involved. One expectsh ,.~(h)~N% since(h) gives the
2 . Njggg typical scale of the maximum ladder length. To test this, we
N=160 normalizedsh by N%®® and 6F by N%1°[such that the rela-
1 . N=80 tion (48) is preserved for smabh’s]. The result is shown in
1 10 100 Fig. 10b). We see that the data are approximately collapsed

onto a single curve, indicating that pinching is indeed a good
way of imposing a controlled deformation from the ground

2 r
(b) state.
gz ; 3. A marginal glass phase
e 1k
£ + N=2560] ] The scaling plot of Fig. 1®) indicates strongly that the
§ o : N:gigo ] energy associated with the pinch deformatiocreaseswith
© L AF ° Nf?ég increasing size of the deformation, i.eqF~(sh)%%’
05F “ N80 | ~NO%1° However, the effective exponent involved is small,
ol o making the result very susceptible to finite-size effects. In
Sh/N® order to decide on the glassiness of the system, we want to

focus on the energy scales associated with the largest pinch

FIG. 10. Pinching free energy as a function of the numifeof  deformations from the ground state. Assuming that there is
minimal energy structure base pairs that are incompatible with theynly a single energy scale associated with large pinches, we
pinch for random sequence disorderkafl =0.0251,,. (a) shows again study the free energyF(N) of the largest pinch as
the raw data. For smalih the pinching free energy is independent defined in Eq.(12) and average this over the ensemble of
of the lengthN of the molecule and obeys a power a3 (5h) sequenceg.
~(6h)°?" (dashed ling This is consistent with the expectation that ~ Tha results are shown in Fig. (50 for the three models of
pinching at smalbh leads to local rearrangements of the secondarydisorder Althouah a weak owér law de endencﬁ(N)
structure. The apparent nonmonotonic behavior at latgis due to on N Caﬁnot begexcluded Ft)he fitted expe)nents obtained for

the small number of sequences in which such a valuétofis . .
realized.(b) shows the same data, but the scalingsbfwith N is the three models are different from each other, ranging from

chosen in accordance with Fig. 8 while the scaling of the pinching?-09 t0 0.19. This is a strong sign of concern, since the ex-

free energy is chosen in accordance with the power law dependenf®Nents are expected to be independent of details of the
estimated above. models. In Fig. 1(b), the same data are plotted on a log-

linear scale. The data fall reasonably on a straight line for
see Fig. 9. From the mountain representafioig. 3b)], itis  each of the modeléespecially for largeN), suggesting that
easy to see that this is just the difference between the respeifie pinching free energy may actually increase logarithmi-
tive ladder distances of bageand basd from base 1 as cally with the sequence length, similar to the expected be-
defined in Eq(13), i.e., h; j=h;(S*)—h;(S*). To find how  havior in the molten phase. However, in this case, the pref-
the excitation energy depends on the pinch size, we just neeftor of the logarithm depends on the choice of the model
to follow how the pinching free energyF; ; depends statis- and is much larger than the factgksT expected of the
tically on the sizeh; ;. To do this, we choose a large number molten phase; see EQR6). For example, for the numerical
of random sequences, and determine the minimal energgata obtained akgT=0.025i,, the prefactor is approxi-
structureS* for each of these sequences. Then we computéately 0.@i, for the sequence disorder model, while the
the pinch free energieAF; ; and the pinch sizé; ; for all  expected slope for the molten phase is 0.0gy&t this tem-
possible pinchesi,j) for each sequence. Afterwards, we av- perature. Having different logarithmic prefactors for the dif-
erage over allF; ;'s with the same pinch size; ; over all ~ ferent models is not a concern, since a prefactor is a nonuni-

of the generated random sequences to obtain the function versal quantity. Thus, our numerical results favor a
logarithmically increasing pinch energy, with a prefactor

5F(5h)zi2j Ay Oon i, | I}J‘, Sonn - (47
Y ' ®In order to ensure that choosing the largest pinch as representa-
The results obtained &;T=0.0254,, for a large range of tive is justified, we studied in addition the ensemble average of the
sequence sizes frold=80 to 2560 are shown in Fig. (&). maximalpinch free energF . (N)=max - -;<nAF; ;. This quan-
We see that the data for differeNis fall on top of each other tity yields an upper bound estimate of the energy associated with
for small sh’s with large-scale pinches for each sequence lengtive find AF ,.,(N)

. andAF(N) to have the same scaling behavior, and thus we present
SF~(6h)%%7. (48)  data only for the latter.
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#(b) y _
£6 O FIG. 12. Prefactor(T) of the logarithmic dependence afF
= “0..:2?/“ on N for random RNA sequences generated by the sequence disor-
Z 4L Q.‘,..g;';“’ o der model: At high temperatures, the prefactor indicated by the
r'é ‘3/{/* ..... T circle is well described by the dashed line (¥g) expected of the
ool o sequence disorder molten phase. At low temperatures, it again has a linear temperature
x energy disorder ; i : B
? o Gaussian disorder dependence and is _emplrlcally _fltteq by Fhe dotted line @,97
' 100 1000 —2.7&gT. The numerical uncertainty ia(T) is of the order of or

smaller than the size of the symbols.

FIG. 11. Pinching free energies at low temperat@agshows a
double-logarithmic plot with fits to power laws for the data with
N=160. The exponents ai>'8 N°% andN®*°for the sequence, Now that we have studied in great detail the behavior of
energy, and Gaussian disorder, respectivély. shows the same random RNA in the low- and high-temperature phases, we
data in a single-logarithmic plot together with the best fits to adescribe its behavior at intermediate temperatures. To this
logarithmic dependence dw The statistical error of the data points end, we again study the pinch free energﬁ??s(N) defined
is about the size of the symbols for lafyeand smaller than that for in Eq. (12), but this time over a large range of temperatures.

N=640. Due to the apparent systematic bending of the data in th : .
double-logarithmic plota), we conclude that a logarithmic depen- ?e_csncgn;ra;engnSt?ued)s/eglézﬂgre]géssorgferlg?]zgﬁéﬁjrgltgo
—HYmmT

dence fits the data better, although we cannot exclude a power law™

fits 1280.
beh th I :
ehavior with a very small power From Secs. 1IB3, llA, and IVB3, we know that the

_ pinch free energyA F(N) depends logarithmically on the se-
much exceedinggT at low temperature. uence lengttN at both low and high temperatures. Indeed,
What does this tell us about the possible glass phase @hjs |ogarithmic behavior seems to hold falt temperatures

the random RNA? In order to answer this question, westudied. The data for each temperature can easily be fitted to
should remind ourselves that rather special deformations af@e form

chosen in this study. For our choice of pinch deformations, o

we observe a logarithmic dependence of the gap between the AF(N)=a(T)InN+c(T). (49
ground state energy and the energy of the excited configura-

tions on the Iength of the sequence or deformation. Thisthe prefactora(T) is found to depend on temperature in a
corresponds to the marginal case of the droplet theory whergonmonotonic way as shown in Fig. 12. The figure contains
the exponentw vanishes. Since the pinching free energiesyalues ofa(T) extracted by fitting the data fod= 160 to the
increase with increasing length, we cannot exclude a glasgrm Eq. (49). The uncertainty of this fit is on the order of
phase in the case=0. We can say, though, that the increasethe size of the symbols or smaller. For high temperatures, we
of the excitation energy with length is at most a power lawfind a(T)~ 2kgT (dashed line in Fig. 12as expected for the
with a very small exponent and most probably even less thamolten phase. At low temperatures, it starts from a finite
any power law. Therefore, a possible glass phase of RNA hagajye of the orden,, and decreases linearly with tempera-
to be very weak. If it turns out that the excitation energy istyre, asa(T)~0.97u,,—2.7kgT (dotted line in Fig. 12 If
indeed a logarithmic function of length, with a nonvanishinge identify the glass transition temperatdFg as the inter-

prefactor asT—0 as our numerics suggest, then the low-section of the dashed and the dotted lines, we get
temperature phase would be categorized formally asag

ginal glass phase, analogous to behaviors found in some
well-studied models of statistical mechanj@§—39. In any
case, we should note that the actual difference in the excita- ) ) ) _
tion energy is only a factor of 4 across two and one-half It is interesting to compare this estimate W|t_h thg lower
decades in length. Thus the glassy effect will be weak folPoundT* for the glass transition temperature given in Sec.
practical purposes. On the other hand, the weak dependenbéA. According to the consistency conditid#5), this lower

of the excitation energy on length may be the underlyingPound is defined by

cause of discrepancies in the literat{it8—2Q regarding the

existence of the glass phase for random RNA. N Hum+2 fo(T*)]=3kgT* (51

C. Estimation of the phase transition temperature

keTy~0.251,,. (50)
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FIG. 13. Sequence length dependence of the fraction of un- FIG. 14. Estimation off*. The symbols show numerical esti-
bound basesr(N)=1+2 fo(T~0;N)/u,,. The data shown are mates of the quantity 2 fy(T)/u,, for different temperatures. The
taken atkgT=0.0251,,. For smallN they are dominated by the estimates are obtained by averaging the numerically determined
statistical fluctuations in the number of bases according td®).  free energy of 1000 random sequences of lemgth1280 generated
(the dashed line At large N, they saturate to a positive constant. by the sequence disorder model E&) with u,=u,,=1. The

low-temperature behavior can be described reasonably well by the
with A=In2. It is necessary to determine the temperatureexpression 0.0890.3kgT/uy, (dotted ling. The consistency con-
dependence of the quantity,+ 2 fo(T) on the left hand side dition (45) for the molten phase breaks down when this line inter-
of this equation numerically. To do this, we measure the totafects (3/2)In(BgT/ur, (dashed ling This yieldskgT* ~0.0661, as
free energy of each sequence generated. Averaging these frééower bound for the glass transition temperature of this system.
energies over all the sequences of a given lehgénd tem-

peratureT, and dividing the results by the respective lengthsfrom Sec. IV A. Note that this value is remarkably small, as
N, we obtain an estimatéy(T;N) of the free energy per itimplies that in the ground state structure of our toy random
length which approaches the desiredT) for large N. sequence more than 90% of the maximally possible base
Figure 13 shows how these estimates depend on the sgairs are formed. But this is an artifact of the very simple
quence lengtiN for the lowest temperaturkgT=0.02%1,,  energy rule used in our toy model. This fraction certainly
studied. Instead of the free energy per length itself, the figurgyill become smaller if the realistic energy rules are used,
shows the fraction of unbound basegN)=1+2f,(T  making the system more frustrated and hence more glassy.
~0;N)/uy,. For short sequences these estimates show a In order to obtain the temperature dependence of the
clear dependence on the sequence lehgtfihis can be un-  quantity 1+ 2 fo(T)/u,, on the left hand side of E¢51), we
derstood in terms of sequence-to-sequence fluctuations in thell use its value atN= 1280 as an estimate of its asymptotic
maximum number of possible pairings, due to fluctuations invalue. The results are shown in Fig. 14. The behavior at low
the actual number of each type of base present in a giveemperatures can be described by a linearly decreasing func
sequence, even if all four bases are drawn with equal proltion, shown as the dotted line in Fig. 14. According to Eq.
ability. This effect can be quantified by assuming that there i§51), the temperaturd* is obtained as the intersection of

no frustration for smalN, i.e., for any given sequence of the this curve and\kgT/u,,,, shown as the dashed line in Fig.
four basesA, C, G, andU, a secondary structure with the 14 for A =In2. We find

maximal humber of Watson-Crick base pairs can be formed.
If we denote byny the number of times that the bade
appears in the sequence, the maximal nunibexf pairings

is given byM = min{n,,n }+min{ng ,nc}. The fraction of un-
bound bases 4+2M/N due to this effect can be computed
straightforwardly by approximating the multinominal distri- which is consistent with the estimatg0), but is a rather
bution of na—ny by an appropriate Gaussian distribution, weak bound. Improved bounds dig can be made by relax-
with the result ing the condition of perfect complementarity of the two seg-
ments imposed in Sec. IV A. This leads to larger values of
the prefactol ~* in Eq. (51), and hence a smaller slope for
the dashed line in Fig. 14, and a larger valueléf While

the details of improved bounds will be discussed elsewhere,
We expect this effect to be responsible for the increase ifet us remark here that from Fig. 14 it is clear that, no matter
o(N) found in Fig. 13. Indeed, this effect, as indicated by thewhat the slope of the dashed line becomes, we will never
dashed line in the figure, explains tNedependence af (N) haveT* larger than the temperature b§T~0.22u,, where
well for N<100. However, we also see from the figure athe quantity &2 fo(T)/u,, goes below zero. Thus, these
clear saturation effect at lardé This saturation reflects the estimates will always be consistent with the observed glass
finite fraction of unbound bases, which is a frustration effecttransition temperature dfgT~0.25,.

forced upon the system through the restriction on the type of Moreover, we note that the low-temperature behavior 1
allowed pairings in the allowed secondary structure. The un-+2 fy(T)/u,~0.089-0.3kgT/u,,, as indicated by the dot-
bound fractiono~0.08 isfinite asymptotically as expected ted line in Fig. 14, appears to be roughly related to the be-

ke T* ~0.068,, (53)

2M
1—W%2/\/7TN. (52)
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havior ofa(T) (dotted line in Fig. 12in the same tempera- and which phase the molecule is in under normal physiologi-
ture range, by a single scaling factor of approximately 0.1cal conditions. Finally, it is very important to perforkinetic

Thus, it is possible that studies to explore the dynamical aspects of the glass phase.
. Despite the apparent weakness of the thermodynamic glassi-
a(T)~N"Tup+2f(T)] (54 ness, the kinetics at biologically relevant temperatures is ex-

if it turns out that\ ~1~0.1 for T<Tg. If this is the case, pected o be very slow for random sequenicé.

then it means the procedure we used to estimate the pinch
energy in Sec. IV A is quantitatively correct, implying that

the ground state of a random RNA sequence indeed consists The authors benefited from helpful discussions with U.
of the matching of rare segments independently at eaclterland and D. Moroz. T.H. acknowledges an earlier col-
length scale. It will be useful to pursue this analysis furtheraboration with D. Cule which initiated this study, and is
using a renormalization group approach similar to that develindebted to L.-H. Tang for a stimulating discussion during
oped for the denaturation of heterogeneous DNA by Tangvhich the simple picture of Sec. IV A emerged. This work
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random RNA sequences far below the denaturation transition

so that bases predominantly form base pairs. We introduced AppeNDIX A: HEURISTIC DERIVATION OF THE

several toy energy models which allowed us to perform de- TWO-REPLICA PHASE TRANSITION

tailed analytical and numerical studies. Through a two-

replica calculation, we show that sequence disorder is pertur- Before we describe the exact solution for the two-replica

batively irrelevant, i.e., an RNA molecule with weak problem, as defined by the partition functighin Eq. (29)

sequence disorder is in a molten phase where many secon@nd the bubble weigh® in Eq. (30), we first provide here a

ary structures with comparable total energy coexist. A nuheuristic derivation of the qualitative results. This mainly

merical study of the model at high temperature recovers scaperves to give a flavor of the two-replica problem in the

ing behaviors characteristic of the molten phase. At very lowanguage of theoretical physics.

temperatures, a scaling argument based on the extremal sta- To this end, we define the quantily(N) to be the parti-

tistics of rare matches suggests the existence of a differefiion function over all two-replica configurations of a se-

phase. This is supported by extensive numerical resultguence of lengtiN—1 under the constraint that base 1 and

Forced deformations are introduced by pinching distanbaseN—1 form a common bond. It is easy to see that

monomers along the backbone; the resulting excitation ener- . _

gies are found to grow very slowlyi.e., logarithmically II(N)=8¢(N-2;9) (A1)

with increasing deformation size. It is likely that the low- \\1ore we set

temperature phase is a marginal glass phase. The intermedi-

ate temperature range is also studied numerically. The tran- 4=97. (A2)

sition between the low-temperature glass phase and the high- . _ o _ N

temperature molten phase is revealed by a change in thEUS, the critical behavior g§(N:q) is identical to the criti-

coefficient of the logarithmic excitation energy, from being ¢&l behavior o I(N), which we will study in the following.

disorder dominated to being entropy dominated. Due to the no—pseudoknqt constraint of the secondary
From a theoretical perspective, it would be desirable tostructuresII(N) has a very simple structure,

find an analytical characterization of the low-temperature

phase. If the excitation energy indeed diverges only logarith- [I(N+1)=§Q(N—1)+ E ol +1,+DII(ny+1)

mically, one has the hope that this may be possible, e.g., via l1.12.n1

the replica theory, as was done for another well-known

model of statistical physids37]. It should also be interesting

to include the spatial degrees of freedom of the polymer

X O\, +1,4n, N-2

backbone(via the logarithmic loop energyto see how se- + qol+1,

quence disorder affects the denaturation transition. Another 112,131

direction is to include sequenatesignwhich biases a spe- +la+ 1)II(n,+1)

cific secondary structure, e.g., a stem I¢@@]. From a nu-

merical point of view, it is necessary to perform simulations XIL(Np+1) 81 41 yr1g4n,+n, N-2T 0 (A3)

with realistic energy parameters to assess the relevant tem- o o S
perature regimes and length scales where the glassy effe@$ illustrated in Fig. 15. To simplify the above equation, it is
takes hold. To make potential contact with biology, oneuseful to introduce the transforms

needs to find out whether a molten phase indeed exists be- o
tween the high-temperature denatured phase and the low- ﬂ[,u]: 2 TI(N)e#N
temperature glass phase for a real random RNA molecule, N=1 ’
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RNA structure formation[22]. The analysis of a self-
consistent equation of the tygA6) is well known[22,41].

The analytical properties df[[,u] depend crucially on the
form of Q[y]. Let the singular part o® be

Qsingoc (y - yc) ot (AB)

FIG. 15. Recursion equation for the restricted partition function
II(N+1): While the first and Ia_st of th&l bases describt_ad by wherey, is the position of the singularity o@[y]. [Note
II(N+1) always form a base pair, this outermost base pair can bﬁﬁataZd/Z by comparing the forms of the Hartree equations

followed by a loop with 0, 1, 2... outgoing stems. Each of the - .
stems is described b itself while the loop is characterized by its (A6) and(A7).] For 1<a<2, there is only one solution for

total length, which can be split into the different pie¢em differ- ~ all §>0, with a square root singularity ihl[«] at some
ent ways. finite value of u. For a>2, there are two possible solutions

depending on the value d. The square root singularity
R * exists for@ exceeding some critical vallié.(q)>0, while
alyl= E Q(N)e YN for §<@.(q) the square root singularity disappears and
N I[ 1] is governed by the singularity @ given in Eq.(A8).
of IT and Q. Now, applying thez transform to both sides of Performing the inverse transform and using &), we get
Eq. (A3), we obtain G(N;G)~N~ 9N where( is a nonuniversal parameter given
dy by the location of the singularity, while the exponénthar-
i 2u—g | —= Orvik K 1 2ua—y acterizes the phase of the system and is given by the singu-
i1 | 52 QUYIRTy. {1+ KTy w1 ulePe erizes the phase of the system and is given by the sing
larity of I1[ «]: We haved=3/2 if II[ ] is dominated by the
+(k[y,ﬂ]ﬁ[ﬂ]ezue*y)2+.--} (A4) square root singularity anéi=« if II[ ] is dominated by
0.
The interpretation of the two phases witk 3/2 anda is
- 1 straightforward. The phase with=3/2 describes the usual
N e (A5 RNA secondary structurfsee Eq.(23)]; here the bubbles
described byQ are irrelevant. In the other phase, the result
and the inverse transforn@(l)=f(dy/2wi)@[y]ey' was that &=« indicates that base pairing is not relevant and the
used. system behaves as a single bubble. In the context of the
Equation(A4) can be simplified greatly to the following Original two-replica problem, the irrelevancy of the bubbles
form: in the #=3/2 phase indicates that the two replicas are locked
together, behaving as a single replica in this phase. In the
dy Q[y] other phase, the attraction of the common bonds is irrelevant,
— = ~ . (AB) and the two replicas become independent of each other.
2l ey ] -TI[ w]e?e ™Y As explained in Sec. Il B, the purpose of the two-replica
calculation is to determine whether the inter-replica attrac-
This is reminiscent of the well-known Hartree solution to thetion, characterized b here, is irrelevant, i.e., whether the
4 i i «
¢ theory, or equivalently the self-cqnsstgnt tr_eatAment of thesystem will not yet be in th@=3/2 phase for a value &
self-interacting polymer pAI‘Oblelﬁﬂl], if we identify § as the =q?x 1. This is possible only if.(q) >0. From the solution
interaction parameter and[y, ] as the “propagator.” The of the problem described above, this depends crucially on the

usual form of the Hartree equation, singularity of O, specifically, on whether>2. The diffi-

where

[ n]e? =g f

R ddk 1 culty in ascertaining the form of lies in the no-common-
H[,u]zqf 3 ~ (A7)  bond constrainti.e., S;NS,=J) in the definition ofQ (30).
(27) K2+ u—TI[ ] However, we note that fofi=1 the two-replica partition

o . function G(N;§=1) is simply the square of the single-
corresponds to the smajl-small-u limit of Eq. (A6), with-y  replica partition functionG(N). Thus, G(N;§=1)=G?(N)
playing the role of the square of the “wave numbdét™Note  ~N~2%z2N(q) according to Eq.(23). Since we just con-
that O[y] plays the role of the density ¢épatia) states, i.e., vinced ourselves that can take on only two possible values,
dyQ[y]=d%/(27)9, whered denotes thelimensionalityof ~ hamely,a and 3/2, and since &= 3+ 3/2, we conclude that
the “embedding space.” a=260,=3>2 and moreover’<q.(q). Thus, we do ex-

In the context of RNA, de Gennes used this approach to
describe the denaturation of uniformly attracting RNA more

than 30 years agfl5]. Recently, this approach has been "Note that the critical valug.(q) depends throug on g but not
extended by Moroz and Hwa to study the phase diagram aén .
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pect the phase transition to occurdg{q)>0. However, itis for N=2 andn=1. The applicable boundary conditions are
not clear from this calculation if the system@&1 (or § W(N,N—1;§)=0, W(N,N;g)=1, and W(N,n;q)=0 for
=q?) is exactly at or strictly below the phase transition eachn>N=1 andW(N,0;q) = dn 0-
point. We leave it to the exact solution of the two-replica At this point, it is convenient to introduce tlzéransforms
problem presented in the next two appendixes to establisim order to decouple the discrete convolution in EB2).
that§=q? is indeed strictly below the phase transition point They are
and that therefore disorder is perturbatively irrelevant.
We note that, in the context of thg* theory or the self- N ”
consistent treatment of the self-interacting polymer, the re- Q(ZJNQ)ENgl GIN;a)zN,
sult «=3 implies that the embedding spatial dimension is -
d=6. Thus, the two-replica problem corresponds to the de- w
naturation of a single RNA molecule in six spatial dimen- ()= -N
sions. The bubble® of Fig. 6, which originate from the A2) N§=:l QN)Z"%,
branching entropy of the individual RNA molecules, play the
role of the spatial configurational entropy of the single-and
stranded RNA in the denaturation problem.

W(z,n8)= > WIN,n;g)z N= > WIN,n;g)z N
APPENDIX B: SOLUTION OF THE TWO-REPLICA N=1 N=n

PROBLEM
) ) ) Using Eq.(B2) and the boundary conditions we get
In this appendix, we present the exact solution of the two-

replica problem. While most of the details are given here, the A *
most laborious part is further relegated to Appendix C. 2WMz,nG)= >, WIN,ng)z N~
N=n

1. Implicit equation for the two-replica problem 1 ” N
. . N . _ =z " D OWIN+LNTE)Z
We start by introducing an auxiliary quantiy(N,n;q). N=n+1

This is a restricted two-replica partition function, summing

over all independent secondary structures of a pair of RNA o (n-1 N
molecules of lengtiN—1 bases in which there are exactly =z )+N:En+1 WIN.n—=1.9)z
n—1 exterior bases of the common bond structuak of
which are completely unbound in both replicas. Since the o A o
exterior bases form one of the bubbles of the common-bond +q qN:zn+1 |:Zn W(i,n;4)z
structure, the possible binding configurations of these exte-
rior bases are described ®(n). Thus, the full partition XG(N=i;g)z-N-D
function of the two-replica problem can be calculated from R R .
this restricted partition function as =W(z,n—1:9) +g2gW(z,n;§)G(z;T).
N A
Q(N;ﬁ)znzl WIN,n:G) Q(n). (B1) This can be solved for\(z,n;q) with the result
. . . Vv(z,n;ﬁ)=+\7v(z,n—l;ﬁ)- (B3)

Now, let us formulate a recursion relation fov by adding 2—q%GG(.9)

one additional basH to each of the two RNA molecules. We
can separate the possible configurations of the new functio. , L -
W(N+1,n;§) according to the possibilities that the new Jﬂogether with the boundary conditio(z,0,g) =1, we get
baseN is either not involved in a common bond or forms a N 5 PSR

common bond with baseti <N. This yields the recursion W(z,n4)=[z—qq4(z;d)] " (B4)

relation ) ]
If we now multiply Eq.(B1) by z~N and sum both sides over

N_1 N we get
WIN+L08)=WN,n—178) + 9% 2 W(i,n;d) .
Gz = 3, Wizma)Qn) (B5)
XG(N=i;q) (B2) n=t

which, upon inserting Eq(B4), becomes an implicit equa-

8An exterior base of a secondary structure is a base that could t;éon
bound to a fictitious base at positidbh+ 1 without contravening the R R R
no-pseudoknot constraint. G(z8)=92(z—9%4G(z9)) (B6)
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for the full partition function@(z;a), provided that we know From Eq.(B8), the same singularity must occur @(z)
the functionQ. atz={(0)=25—q’g;, where
Since@ does not depend @i, we can find its form using o
the following strategy. Ifg=1, a common bond does not glzg(zo;qzl): > G(N)?z, N (B10)
N=1

contribute any additional Boltzmann factor. Thus, the two-

replica partition function for this specific value Gfis just . . )
the square of the partition function of a single uniformly IS @ Positive number and does not depend on anything else

attracting RNA molecule, i.e., but g. Sincez—qzé(z;“q=1) is a smooth monotonically in-
creasing function which maps the interyia?,[ into the

interval [£(0), o[, it follows from Eq. (B8) that Q(z) is a
smooth, monotonically decreasing function which maps the
interval [£(0), o[ into the interval ]0g4].

Now that we have characteriz@(z) in detail, we can

G(N;G§=1)=G*(N). (B7)

Since we knowG(N) through the exact expressig22) for

its z transform G, we can regardj(z;g=1) as a known
function, even though a closed form expression is not avail-

able. From Eq(B6), we have proceed to study(z;q) for arbitraryg. Clearly, according to
Eqg. (B6), G(z;§) has a singularity leading t@#=3 at z
G(zG=1)=0(z— ¢?(z§=1)). (B8) =27,(q), defined implicitly by
~ = 2% 5 =N =) —
This is an equation foQ in terms of the known function 21(4)~979G(z:(9);3)= £(0), (B11)

@(z;”q=1). After we solve it for@ below, we can use Eg.

(B6) to solve for the only leftover unknowr@(z;“q), for
arbitrary values ofj.

because@(z) has this singularity at={(0). Again accord-

ing to Eq. (B6), we hziveé(zl((”q);(”q):Q(g(O))=g1 inde-
pendent of. This leads to one of the key results:

2. Solution in the thermodynamic limit 7,()=¢(0)+q%g,=(1+ 2\/5)2+ a%(G—1)g;.
In the thermodynamic limit, it is sufficient to consider (B12)

only the singularities of the transformg(z;q). From the If 2=2,() is the only singularity of@(z;ﬁ), it implies

form of G in the vicinity of the singularity(d), the two-  that there is only one phase with=3, and the free energy

replica partition functionG(N:q) is readily obtained by the per ength of the two-replica system is given by
inversez transform, with the result

- _ 2 25

. . : for all values ofg. By differentiating this with respect 1q,
The result immediately yields the free energy per Iengtr\Ne obt\tlainuthe fr?actign (I)f comrln(;ngcor:ta\é\{[ls P 9
f=—kgTInZ. More significantly, the exponen# reveals

which phase the two-replica system is in: =1 (i.e., no P

disordey, the two-replica system is just a product of two S, = 9799:

independent single-replica systems and we must ffav8 (1+2V9)%+ 0%,

as implied by the single-replica partition functi@(N) in

Eq. (23). On the other hand, f&— o, the two replicas are in this phase as a function Gt For very large disorder, i.e.,

forced to be locked together and behave as a single replicfor 1arged, this fraction converges to 1. However, since it is

In this case, we must have=3/2. As we will seef=3 and the fraction of bonds divided by the total number of bases

3/2 are the only values this exponent can take on for thi@nd every base pair has two bases, it has to be bounded from

system; it indicates whether or not the two replicas aredbove by 1/2. Thus, we conclude that EB13) cannot be

locked, and hence whether or not the effect of disorder ighe free energy of the two-replica system for GH.

relevant. At least for largeq, there must be another singularity of
The singularityZ () of @(Z;ﬁ) is given implicitly by Eq.  9(z,q) that will yield a different expression for the free en-

(B6), which we now analyze in detail. We start by recalling €rgy to give a physically reasonable fraction of common

the solution of the homogeneous single-RNA problem, Eqbonds.

(23). From the relation (B7), we have G(N,§=1) In order to find this other singularity, we introduce the
=A%(q)N~2%z3N for large N, with 6,=3/2, Zo=1+2\/q,  inverse functionZ(g;d) of G(z;d). From Eq.(B6), it fol-
and Aq(q) given in Sec. IIB2. Hence, the transform lows that for anyg and anyg ]0,94],
G(zg=1)=3\G(N;§)z N is defined on the interval

(B14)

[z3,[. It is a decreasing function of terminating with a G(Z2(9;4):8)= Q[ 2(9;8) — 4%4G(2(9:8);9)]
singularity atz=z§, which produces thé=3 monotonically o
singularity inG(N;g=1). =g=9[ 2(g;4)—dg]
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Z(gD) the corresponding value ip i.e., z;(§) = 2(g1;0), is trivi-
ally shifted by an amoung?(§—1)g, from z§ asq varies.
Thus, the scaling behavior is characterizedésy3 as ifq
=1 (i.e., absence of disordgralthough the free energfy
=—kgTInz(@) is shifted as already derived in E@B13).

If the final slopez’ +q%(§—1) of the right hand side of
Eqg. (B15) is positive the situation becomes much different.

Upon adding the linear functioné’(g;a) develops a mini-
mum at some position(g,(q),z,(4)). Thus, the inverse

function &(z;"q) has to be calculated from the lg&mallg)

branch ofZ(g;q) and has a square root singularityzaq).

This square root singularity implies that the characteristic
X FIG. 16. Inverse of the Laplace transformed partition functionexponent becomeg=3/2, consistent with the picture that in
Z(9;4) of the two-replica system at various values of the common-this phase the two replicas are locked together and fluctuate
bond interactiorj. The solid line shows the free system without as one single effective RNA molecule.

any interaction of common bonds. In the presence of an interaction, The positiong,(q) of the minimum is determined by the
the inverse function of the partition function can be obtained byrgot of the derivative, i.e., by

adding a linear function to the free system function. If the interac-

tion is not too strond§<Td., short-dashed lineadding the linear d
function with a small slope does not change the qualitative form of - qz(ﬁ— 1) :d_
the partition function. In this case, the two-replica system is con-

trolled by the singularity ag=g,, which is independent dj. At

stronger interactions§>T., long-dashed linethe inverse func- :{

2@

Z(g;1)
9=0,(a)

dg

tion develops a minimum. Beyond this minimum it is not invertible
any more and the two-replica system is then dominated by the sin-
gularity arising from this minimum.

-1
&(2;1)1 . (B16)

2= Z(g,(3);1)

The corresponding valué(gz(ﬁ) ;0) determines the location
of the square root singularitg,(q) of G(z;G), i.e., the free
energy per length of the two-replica problem.

Since@‘l(g) does not depend G, we can eliminate it by Z,(q) can be conveniently expressed in terms of the aux-

evaluating the last equation above at the special valua iliary quantity z(d) defined throughy,(d) = G(z(d); 1) as
and write

=07Y(g)=2(g;9) - g%dg.

2,(8) = 2(95(9);d)

2(9:9)= 2(g;1) + 43T~ 1)g, (B15) n _ _
) ) = 2(92(8); D+ 9*(G—1)g>(T)
where Z(g;1) is the inverse of the known functiof(z;q

— = 2= _ - =\ .
=1). Equation(B15) is now an explicit solution for the =2(8)+a%(G—1)G(z:(@); ).

inverse ofG(z;g) for arbitrary G, and the singularity o,  Comparing this expression with E@®13), which is valid for
located atg=g,(q) and %(gz,”q) =27,(q), yields the free smallg, we can summarize the complete solution in terms of
energy of the two-replica system, i.d;=—kgTInz, in ) )
this phase. the uniqueze]zgy,~[that ful-

While Appendix C derives the position of the dominant ~ ' AN 20 =
singularity present in EqB15) rigorously, we will resort to Z(a) fills (d/d2)G(z;1)=~11a" (@~ G>Tq.

~ 2 2 =~
some intuitive argument here. Singéz;1) is a monotoni- z5=(1+2V0)*, G=<Te,

cally decreasing, convex function, so is its invesg;1).

The latter function ends at the poirglczg) with some slope where
z'<0 in a singularity that produces th&=3 behavior in-

dicative of two independently fluctuating uniformly self-
attracting replicas. This is shown in Fig. 16 as the solid line. qc=1- ?> 1, (B18)
According to Eq.(B15), we can obtain the corresponding

function ;Z(g;“q) for arbitrary by simply adding a linear and
functiong?(§— 1)g to this function. If the slopg?(g—1) of

(B17)

this linear function is less than the smallest slopeztg; 1), zZ'= ! — =—— ! .
i.e., if 2 +q3(G—1)<0, adding this linear function does not (d/d2)[,-2G(z74=1) S NG(N)2zg 2N
qualitatively change anythin¢see the short-dashed line in N=1 0

Fig. 16) The only singularity is still the one a=g,, and (B19
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In terms of thisz.(q), the smallest singularity o%(z;a)
is located at

£(6) = 2o(8) + %G~ 1) G(z(6); ). (B20)

PHYSICAL REVIEW B5 031903

This expression obviously has a singularityzg{q) which is
defined by

d

a7 G(z;1)=—

2= 2(0(z,(3);3);1)

PGSV

The free energy per length of the two-replica system is given

by
f=—kgTIN[2(8) + 02— 1)G(z(T);1)]  (B2D)
and the fraction of common bonds is
2 7 ~ ’1
_ 9%9@(@);1) ©22

2() + 92T —1)G(z,(T); 1)

Since (d/dz)é(z;l)e [1/z',Q[, this is only possible for

~ ~ Z,
q=q.= 1- ?
For smaller values dij, there is no other singularity and the
free energy per length is given by E@13).

If §=T, the additional singularity,(q) exists and is—as
we will see below—always smaller than the singularity
z,(§). Thus, the free energy per length is given by the sin-

This fraction of common bonds turns out to be continuous afularity z,(g) in the strong coupling phase, i.e., Q&G .

the phase transition but it exhibits a jump in its slop&jat
={c-

In the cas&<T_, these simplify to Eq9B13) and(B14)
[or Egs.(34) and (35), respectively, with z.(g)=z5 inde-
pendent ofg. The type of singularity of the Laplace trans-
formed partition function is the same asggt 1, resulting in
#=3. Forg>Tq., we cannot write down a closed form ex-
pression forZ(4) any more. But it is given implicitly in
terms of the solution of EqB17); it involves only single-

At first sight, Eq.(C1) still looks as if z,(§) could be

calculated only if the full functior@(z;ﬁ) is known. How-
ever, for anyg=0q. we can definez;,(4) to be the unique
solution of the equation

dz

G(z;1)=—

z=2,(9)

L
°@-1

This quantity depends only on the functié(lz;l). Accord-

replica quantities and can thus be evaluated numericaling to Eq. (Cl1), zy(G) and z,(q) are related by

Moreover, we have seen that the dominant singularity in thi%(@(zz(ﬁ)'ﬁ)' 1)=2,§). This
) ) C .

regime is a square root singularity, implyirgg= 3/2.

APPENDIX C: THE FREE ENERGY OF THE
TWO-REPLICA PROBLEM

In this appendix we give a derivation of the position of

the nontrivial singularity in the Laplace transform of the par-

tition function @(z;ﬁ). A more intuitive, graphical derivation
of this result was given in Appendix B. Using E@®15), we
start by calculating

-1
T 9(z0)=| 5= Z(Q:TZI)}
dz _dg 9=0(z)
R -1
== Z(g;1)+9% (G- 1)
_dg 9=0(z7)
[ d R -1 -1
= {d—z . 9z +q2(”q—1)} :
L z=2(43(z;0);1)

implies that G(z,(9);d)
=G(z.(9);1). On the other hand, EqB15) applied tog
=0(22(4);9) yields
2,(8) = Z(G(2,():8):)

= Z(G(22(1):%); 1) + 42(@— 1) G(z2(1):9)

=2,(T) + 9*(G~ 1) G(z:(T); 1)
which is, finally, an expression that involves only quantities
of the noninteracting system. Since+q?(§—1)G(z;1)
=2(G(z;1);9) is a monotonic function on the interval
[23,2:(T)], we always havez,(q)=<z,(§) with equality if

and only if zc(ﬁ):zg, i.e., forg=Tq.. Therefore, the free
energy per length is indeed given by

fo=—kgT IN[2:(T) + 42T~ 1)G(zo(T); 1)]

for anyGg=T7..
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