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Statistical mechanics of secondary structures formed by random RNA sequences
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The formation of secondary structures by a random RNA sequence is studied as a model system for the
sequence-structure problem omnipresent in biopolymers. Several toy energy models are introduced to allow
detailed analytical and numerical studies. First, a two-replica calculation is performed. By mapping the two-
replica problem to the denaturation of a single homogeneous RNA molecule in six-dimensional embedding
space, we show that sequence disorder is perturbatively irrelevant, i.e., an RNA molecule with weak sequence
disorder is in amolten phasewhere many secondary structures with comparable total energy coexist. A
numerical study of various models at high temperature reproduces behaviors characteristic of the molten phase.
On the other hand, a scaling argument based on the external statistics of rare regions can be constructed to
show that the low-temperature phase is unstable to sequence disorder. We performed a detailed numerical study
of the low-temperature phase using the droplet theory as a guide, and characterized the statistics of large-scale,
low-energy excitations of the secondary structures from the ground state structure. We find the excitation
energy to grow very slowly~i.e., logarithmically! with the length scale of the excitation, suggesting the
existence of a marginal glass phase. The transition between the low-temperature glass phase and the high-
temperature molten phase is also characterized numerically. It is revealed by a change in the coefficient of the
logarithmic excitation energy, from being disorder dominated to being entropy dominated.

DOI: 10.1103/PhysRevE.65.031903 PACS number~s!: 87.15.Aa, 05.40.2a, 87.15.Cc, 64.60.Fr
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I. INTRODUCTION

RNA is an important biopolymer critical to all living sys
tems@1# and may be the crucial entity in prebiotic evolutio
@2#. As for DNA, there are four different nucleotides~or
bases! A, C, G, andU which, when polymerized, can form
double-helical structures consisting of stacks of sta
Watson-Crick pairs~A with U or G with C!. However unlike
a long polymer of DNA, which is often accompanied by
complementary strand and forms otherwise feature
double-helical structures, a polymer of RNA usually ‘‘ope
ates’’ in the single-strand mode. It bends onto itself a
forms elaborate spatial structures in order for bases loc
on different parts of the backbone to pair with each other
a manner similar conceptually to how the sequence of
amino acid encodes the structure of a protein.

Understanding the encoding of structure from the prim
sequence has been an outstanding problem of theoretica
physics. Most theoretical work in the past decade has b
focused on the problem of protein folding, which is ve
difficult analytically and numerically@3–6#. Here, we study
the problem of RNA folding, specifically the formation o
RNA secondary structures. For RNA, the restriction to sec
ondary structures is meaningful due to a separation of en
scales. It is this restriction that makes the RNA folding pro
lem amenable to detailed analytical and numerical stud
@7#. There exist efficient algorithms to compute the ex
partition function of RNA secondary structures@8–11#. To-
gether with the availability of carefully measured free ene
parameters@12# describing the formation of various micro
scopic structures~e.g., stacks, loops, hairpins, etc.!, the prob-

*Present address: Department of Physics, The Ohio State Un
sity, 174 W. 18th Ave., Columbus, OH 43210-1106.
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able secondary structures formed by any given RNA m
ecule of up to a few thousand bases can be obtained rea
On the experimental side, RNA molecules of 102– 105 bases
in length are available. Furthermore, the restriction to s
ondary structures can be physically enforced in a salt s
tion with monovalent ions, e.g., Na1, so that controlled ex-
periments are in principle possible@13#.

In this work, we are not concerned with the structu
formed by a specific sequence. Instead, we will study
statistics of secondary structures formed by the ensembl
long randomRNA sequences~of at least a few thousand
bases in length in practice!. Such knowledge may be of valu
in detecting important structural components in messen
RNAs which may otherwise be regarded as random from
structural perspective, in understanding how functio
RNAs arise from random RNA sequences@2#, or in charac-
terizing the response of a long single-stranded DNA m
ecule to external pulling forces@14#. More significantly from
the theoretical point of view, the RNA secondary structu
problem presents a rare tractable model of a random
eropolymer where concrete progress can be made regar
the thermodynamic properties@7,15–20#. Nevertheless, there
are many gaps in our understanding. This paper is a deta
report of our ongoing effort in this regard. It provides a se
contained introduction of the random RNA problem to s
tistical physicists as a problem of disordered systems,
depicts several approaches we have tried to characterize
system.

The manuscript is organized as follows. In Sec. II, w
provide a detailed introduction to the phenomenology
RNA secondary structure formation. We review the key si
plifications that form the basis of efficient computing as w
as exact solutions in some cases. We also review the pro
ties of the ‘‘molten phase,’’ which is the simplest possib
phase of the system assuming sequence disorder is no

er-
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evant In Sec. III, we consider the effect of sequence diso
at high temperatures. We show numerical evidence that
random RNA sequence is in the molten phase at sufficie
high temperatures, and support this conclusion by solving
two-replica system, which can be regarded as a perturba
study of the stability of the molten phase. In Sec. IV, w
provide a scaling argument, and show why the molten ph
should break down at low enough temperatures. This is
lowed by a detailed numerical study of the low-temperat
regime. We apply the droplet picture and characterize
statistics of large-scale, low-energy excitations of the s
ondary structures from the ground state structure. Our res
support the existence of a very weak~i.e., marginal! glass
phase characterized by logarithmic excitation energies.
nally, we describe the intermediate temperature reg
where the system makes the transition from the glass p
to the molten phase. The solution of the two-replica probl
is relegated to the appendixes. We present two approache
Appendix A, we provide a mapping of the two-replica pro
lem to the denaturation of an effective single RNA molec
in six-dimensional embedding space; this approach h
lights the connection of the RNA problem to the se
consistent Hartree theory and should be most natural to
theorists. In Appendixes B and C, we present the exact s
tion. It is hoped that the two-replica solution may be help
in providing the intuition needed to tackle the fulln-replica
problem.

II. REVIEW OF RNA SECONDARY STRUCTURE

A. Model and definitions

1. Secondary structures

The secondary structure of an RNA molecule descri
the configuration of base pairings formed by the polymer
the pairing of thei th and j th bases in a polymer ofN total
bases is denoted by~i,j! with 1< i , j <N, then each second
ary structureS is defined by a list of such pairings, with eac
position appearing at most once in the list, and with the p
subject to a certain restriction to be described shortly bel
Each such structure can be represented by a diagram
shown in Fig. 1, where the solid line symbolizes the ba
bone of the molecule and the dashed lines stand for b
pairings. The structure shown can be divided intostemsof

FIG. 1. Diagramatic representation of an RNA secondary str
ture: The solid line symbolizes the backbone of the molecule w
the dashed lines stand for the hydrogen-bonded base pairs for
The backbone is shaped such that stems of subsequent base
and the loops connecting or terminating them can be clearly s
These stems form double-helical structures similar to that of DN
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consecutive base pairs andloops that connect or terminate
these stems. In naturally occurring RNA molecules,
stems typically comprise on the order of five base pa
They locally form the same double-helical structure as DN
molecules. However, while the latter typically occur
complementary pairs and bind to each other, RNA molecu
are mostly single stranded and hence must fold back o
themselves in order to gain some base pairings.

As a secondary structure, one often considers only
restricted set of base pairings where any two base pairs~i,j!
and ~k,l! in a given secondary structure are either indep
dent, i.e.,i , j ,k, l , or nested, i.e.,i ,k, l , j . This ex-
cludes the so-called pseudoknots~as exemplified by Fig. 2!
and makes analytical and numerical studies much more t
table. For an RNA molecule, the exclusion of pseudoknot
a reasonable approximation because the long pseudok
are kinetically difficult to form, and even the short ones o
cur infrequently in natural RNA structures@13#. The latter is
due to their relatively low binding energies for short s
quences and the strong electrostatic repulsion of
backbone—because the polymer backbone is highly cha
and pseudoknotted configurations increase the density o
molecule, their formation can be relatively disfavored
low-salt solution. Similarly, the tertiary structures, which i
volve additional interactions of paired bases, are stron
dependent on electrostatic screening and can be ‘‘turned
experimentally by using monovalent salt solution@13#. In-
deed, the pseudoknots are often deemed part of the ter
structure of an RNA molecule. Throughout this study, w
will exclude pseudoknots in our definition of seconda
structures. Without the pseudoknots, a secondary struc
can alternatively be represented by a diagram of noncros
arches or by a ‘‘mountain’’ diagram as shown in Fig. 3.

2. Interaction energies

In order to calculate Boltzmann factors within an e
semble of secondary structures, we need to assign an en
E@S# to each structureS. Each secondary structure can b
decomposed into elementary pieces such as the stems of
pairs and the connecting loop regions as shown in Fig. 1
common approach is to assume that the contributions f
these structural elements to the total energy are indepen
of each other and additive.

Within a stem of base pairs, the largest energy contri
tion is thestacking energybetween two adjacent base pai

-
e
ed.
airs
n.
.

FIG. 2. Pseudoknots in RNA structures. The base pairings in
cated by the arrow in~a! create a pseudoknot. We exclude su
configurations in our definition of secondary structures. The sh
pseudoknots~called ‘‘kissing hairpins’’! as shown in~b! do not
contribute much to the total binding energy, and the long o
shown in ~c! are kinetically forbidden since the double-helic
structure would require threading one end of the molecule thro
its loops many times.
3-2
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~G-C, A-U, or G-U!, and the total energy of the stem is th
sum of stacking energies over all adjacent base pairs. S
each secondary structure is defined as a single state in
ensemble, it is necessary to integrate out all other mic
scopic degrees of freedom of the bases within a given
ondary structure and use an effective energy paramete
each base stacking. The most convenient one to use is
Gibbs free energy of stacking@12#, which contains an enthal
pic term due to base stacking, and an entropic term due to
loss of single-stranded degrees of freedom~as well as the
additional conformational change of the backbone and e
the surrounding water molecules! due to base pairing. The
magnitudes of these stacking free energies actually dep
on the identities of all four bases forming the two base pa
bracketing the stack and are dependent on temperature t
selves. While their typical values are on the order ofkBT at
room temperature, the enthalpic and entropic contributi
are each on the order of 10kBT. Thus, upon moderately in
creasing the temperature from room temperature to ab
80 °C, the stacking free energies become repulsive and
RNA molecule denatures.

The stacking free energies account for most but not al
the entropic terms for a given secondary structure. Ther
an additional~logarithmic! ‘‘loop energy’’ term associated
with the entropy loss of eachclosed loopof single-stranded
RNA formed by the secondary structure, as well as the
ergy necessary to bend the single strand. All of these en
parameters have been measured in great detail@12#. When
incorporated into an efficient dynamic programming alg
rithm ~to be described below!, they can rather successfull
predict the secondary structures of many RNA molecules
up to several hundred bases in length@8–11#.

In this paper, we investigate the statistical properties
long, random RNA sequences far below the denatura
temperature. We are interested in generic issues such a
existence of a glass phase and various scaling proper
Guided by experiences with other disordered systems@21#,
we believe these generic properties of the system should
depend on the specific choice of the model details. Since

FIG. 3. Abstract representations of the RNA secondary struc
shown in Fig. 1. In~a! the solid line symbolizes the stretched-o
backbone of the molecule while the dashed arches stand for
base pairs formed. Because of the no-pseudoknot constraint
arches never cross.~b! shows an equivalent representation as
‘‘mountain diagram.’’ It is a line derived from the arch diagram b
going along the backbone from left to right and going one step
for every beginning arch, horizontally for each unbound base,
one step down for each ending arch. Such a mountain never
below the baseline and comes back to the baseline at baseN.
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full model used in Refs.@8–11# makes analytical and nu
merical studies unnecessarily clumsy, we will examine
number of simplified models, while preserving the most
sential feature of the system, namely, the pattern of matc
and mismatches between different positions of the seque

As in the realistic model described above, we choose
reference energy to be the unbound state, so that each
bound base in a secondary structure is assigned the ener
We will neglect the logarithmic loop energy, which is impo
tant very close to the denaturation transition@22# where the
average binding energy is close to zero, but not far below
denaturation temperature where most bases are paired. M
over, we will radically simplify the energy rules for bas
pairing: We neglect the stacking energies and instead ass
ate an interaction energy« i , j with every pairing~i,j!. Thus,

E@S#5 (
~ i , j !PS

« i , j ~1!

is the total energy of the structureS.
Within this model, it remains to be decided how to choo

the energy parameters« i , j . One possibility is to choose eac
of the basesb1 ,...,bN randomly from the ‘‘alphabet’’ set$A,
C, G, U% and then assign

« i , j5H 2um if bi-bj is a Watson-Crick base pair

umm otherwise
~2!

with um ,umm.0 being the match and mismatch energy,
spectively. Here, the value ofumm is actually not essential a
long as it is repulsive, since the two bases always have
energetically preferred option to not bind at all. Thus t
energetics of the system is set byum . In our numerical study
to be reported in Secs. III and IV, we will primarily use th
model1 with um5umm51. We will refer to this as the ‘‘se-
quence disorder’’ model.

For analytical calculations, it is preferable to treat all t
« i , j ’s as independentidentically distributed random vari
ables, i.e., to assume

r@$« i , j%#5 )
1< i , j <N

r~« i , j ! ~3!

for the joint distribution functionr@$« i , j%# of all the « i , j ’s.
This choice neglects the correlations between« i , j and « i ,k
which are generated through the shared basebi ; it is an
additional approximation on the model~2!. However, we do
not anticipate that universal quantities will depend on su
subtle correlation of the« i , j ’s. This will be tested numeri-

1Note that, as this is a toy model, there is no reason why
alphabet size of the bases needs to be 4~as long as it is larger than
2 as explained below!. Indeed, the alphabet size and the choice
the matching rule can be used as tuning parameters to chang
strength of sequence disorder. But in our study we choose to m
mize the number of parameters and tune the effective strengt
disorder by changing the temperature.
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R. BUNDSCHUH AND T. HWA PHYSICAL REVIEW E65 031903
cally by comparing the behavior of the model~2! with that of
the model defined by Eq.~3! together with

r~«!5 1
4 d~«1um!1 3

4 d~«2umm!. ~4!

This distribution is chosen to mimic the random seque
model~2! with a four-letter alphabet, but it does not conta
any correlation between the different« i , j ’s. We will refer to
this model as defined by Eqs.~3! and ~4! as the ‘‘energy
disorder’’ model.

In the actual analytical calculations, we will go even o
step further and take the« i , j to be Gaussianrandom vari-
ables specified by

r~«!5
1

A2pD
e2~«2 «̄ !2/2D ~5!

where«̄ is the average binding energy andD is the variance.
In this model~referred to below as the ‘‘Gaussian disorde
model,! the parameterD provides us with a convenient mea
sure of the disorder strength. Again, universal quanti
should not depend on the choice of the distribution functio
We will test this directly by performing numerical studies f
these Gaussian random energies, with

«̄52 1
4 um1 3

4 umm and D5 3
16 ~um1umm!2. ~6!

chosen to match the first two moments of the distribution
~4!.

In contrast to prior numerical studies@18#, we do not ex-
clude base pairing between neighboring bases (i ,i 11), i.e.,
we do not set a minimal allowed length for the hairpin2

Setting a constraint on the minimal hairpin length wou
make the analytical study much more cumbersome. H
ever, in the study by Pagnaniet al. @18#, it was argued that
the system will not be frustrated~and hence will not form a
glass! without this additional constraint. We believe this is
artifact of the two-letter alphabet used by Pagnaniet al. in
nc
in
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o

nt
ar
te
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order to generate the binding energy« i , j ’s via a rule similar
to Eq.~2!: It is simple to see that for any two-letter sequen
in which the like letters repel and unlike letters attract, o
can always find the minimal total binding energy by pairi
up neighboring bases of opposite types and removing th
from the sequence if no additional constraints such as
minimal hairpin length are enforced. As we will discuss
detail in Sec. IV A this is not a problem if the alphabet size
larger than 2. Thus, in our study, we use the sequence d
der model with a four-letter alphabet, or the energy disor
model, without enforcing the minimal hairpin length co
straint. While the minimal hairpin length~of three bases! is
known for real RNA folding, it should not change the un
versal properties of long RNA sequences.

3. Partition function

Once the energy of each secondary structure is defin
we can study the partition function

Z~N!5 (
SPV~N!

e2bE@S# ~7!

of the molecule whereV(N) denotes the set of all allowe
secondary structures of a polymer ofN bases, andb
51/kBT. To calculate this partition function, it is useful t
study the restricted partition functionZi , j of the substrand
from positioni to positionj of the RNA molecule. Given the
model ~1!, the restricted partition functions can be split u
according to the possible pairings of positionj. This leads to
the recursive equation@15,16,23#

Zi , j5Zi , j 211(
k5 i

j 21

Zi ,k21e2b«k, jZk11,j 21 ~8!

with Z(N)5Z1,N being the total partition function of the
molecule. In terms of the arch diagrams introduced in F
3~a! this can be represented as
~9!
to
of

or

n-
l-
of
rtly.
where the wavy lines stand for the restricted partition fu
tions. This is easily recognized as a Hartree equation. S
the restricted partition functions on the right hand side of t
equation all correspond to shorter pieces of the RNA m

2We did, however, repeat most of the numerical studies prese
in this paper with a minimal hairpin size of 1. Since the results
qualitatively identical to the results of the simpler model presen
here, we do not show these data.
-
ce
s
l-

ecule than the left hand side, this equation allows one
calculate the exact partition function of an RNA molecule
lengthN with arbitrary interactions« i , j in O(N3) time. This
is accomplished by starting with the partition functions f
single bases and recursively applying Eq.~8!, and is known
as a dynamic programming algorithm@9,23#. This algorithm
allows one to compute numerically the partition function i
volving all secondary structures, for arbitrary RNA mo
ecules of up toN'10 000 bases. It also forms the basis
analytical approaches to the problem, as we will see sho

ed
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4. Physical observables

Apart from the partition function itself, we will use add
tional ohbservables in order to characterize the behavio
RNA secondary structures. One such quantity of interes
the binding probabilityPi , j , i.e., the probability that posi
tions i and j are paired given the« i , j ’s;

Pi , j[
e2b« i , jZi 11,j 21Zj 11,i 21

Z1,N
, ~10!

where Zi 11,j 21 is given by the recursion equation~8! and
Zj 11,i 21 is the partition function of the sequenc
bj 11bj 12¯bNb1¯bi 22bi 21 . The latter can be calculated a
the quantityZj 11,N1 i 21 when applying the recursion Eq.~8!
to the duplicated sequenceb1¯bNb1¯bN . Thus, allN(N
21)/2 such constraint partition functions can be calcula
with the same recursion inO(N3) time. The logarithms

DFi , j52kBT ln Pi , j ~11!

of these binding probabilities have a natural interpretati
they can be read as the ‘‘pinching free energies,’’ i.e., as
free energy cost of a pinch between positionsi and j and the
unperturbed state. We will make extensive use of this c
cept of pinched structures in our discussion of the lo
temperature behavior of RNA secondary structures in S
IV. In our numerical investigations, we will choose as a re
resentative of all the pinching energies for different positio

DF~N![DF1,N/211 ~12!

which is the free energy cost of the largest possible pi
that splits the molecule of lengthN into two pieces each o
lengthN/221.

Another quantity that describes a secondary structure
its ‘‘size profile.’’ As an intrinsic measure of the size of
given secondary structureS, we use the ‘‘ladder distance
hi(S) between the base at position 1 and the base at pos
i, which is the number of pairings~or ladders! one has to
cross to go from a pair involving base 1 to the basei; see Fig.
4. It can be defined for each secondary structureSas the total
number of pairings (k,k8)PS that bracketi, i.e.,

hi~S![ z$~k,k8!PSuk, i<k8% z. ~13!

This quantity can be very easily visualized as the ‘‘height’’
position i of the mountain representation of the second
structureS as shown in Fig. 3~b!. A quantity characterizing
the full ensemble of secondary structures is thethermal av-
erage ^hi& of this size profile over all secondary structur
with their respective Boltzmann factors; it can be straightf
wardly calculated from the probabilitiesPk,k8 as

^hi&5 (
k51

i 21

(
k85 i

N

Pk,k8 . ~14!

Since we expect all positions in the sequence to behave
similar way, in our numerics we will summarize the prope
ties of the size profile by the ladder distance from the firs
the middle base, i.e., we will study
03190
of
is

d

:
e

-
-
c.
-
s

h

is

on

t
y

-

a
-
o

^h&[^hN/211& ~15!

as a quantity representing the overall ‘‘size’’ of an ensem
of secondary structures.

B. The molten phase

1. Definition of the molten phase

If sequence disorder does not play an important role,
may describe the RNA molecule by replacing all the bindi
energies« i , j by some effective value«0,0. As we will see
later, this will be an adequate description of our rando
RNA models at high enough temperatures~but before dena-
turation.! For real RNA molecules, this provides a coar
grained description of repetitive, self-complementary
quences, e.g., CAGCAḠCAG, that are involved in a num
ber of diseases@24#. We will refer to RNA that is well de-
scribed by this model without sequence disorder as bein
the ‘‘molten’’ phase. It serves as a starting point for modeli
nonspecific self-binding of RNA molecules, and its prop
ties will form the basis of our study of random RNA at lo
temperatures.

2. Partition function

Since in the absence of sequence disorder the energy
structureSdepends only on the number of paired basesuSu of
this structure, we can write the partition function in the mo
ten phase as

Z~N!5 (
SPV~N!

exp@2b«0uSu#. ~16!

The partition functions of the substrandsZi , j become trans-
lationally invariant and can be written as

Zi , j5G~ j 2 i 12! ~17!

whereG(N) is only a function of the lengthN. The recursion
equation~8! then takes the form

FIG. 4. Definition of the ‘‘size profile’’hi of a secondary RNA
structure. The size profile measures the extension of the structu
drawn as a planar diagram. As an intrinsic definition ofhi that
captures this notion of the size of a secondary structure at pos
i, we use the ‘‘ladder distance’’ of basei from the end of the mol-
ecule, i.e., the number of base pairs that have to be crossed w
connecting positioni to position 1 along the folded structure a
indicated by the dashed line.
3-5
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G~N11!5G~N!1q (
k51

N21

G~k!G~N2k!, ~18!

where

q[e2b«0. ~19!

Upon introducing thez transform

Ĝ~z!5 (
N51

`

G~N!z2N, ~20!

the convolution can be eliminated and the recursion equa
turns into a quadratic equation

zĜ~z!215Ĝ~z!1qĜ2~z!. ~21!

with the solution

Ĝ~z!5
z212A~z21!224q

2q
. ~22!

Performing the inversez transformation in the saddle poin
approximation yields the expression@15,17,23#

G~N!'A0~q!N2u0z0
N~q! ~23!

in the limit of largeN, with the exponentu053/2 and the
nonuniversal quantitiesz0(q)5112Aq and A0(q)5@(1
12Aq)/4pq3/2#1/2.

This result characterizes the state of the RNA wher
large number of different secondary structures of equal
ergy coexist in the thermodynamic ensemble, and the p
tion function is completely dominated by the configuration
entropy of these secondary structures. While the resu
derived specifically for the special case« i , j5«0 , we will
argue below that it is applicable also to random« i , j ’s at
sufficiently high temperatures, in the sense that for lo
RNA molecules the partition function is dominated by
exponentially large number of secondary structures all h
ing comparableenergies@within O(kBT)# that are smoothly
related to each other in configuration space. This is what
meant by the ‘‘molten phase.’’

3. Scaling behavior

The exponentu053/2 is an example of a scaling expo
nent characteristic of the molten phase. This and other ex
nents can be derived in a geometric way by the ‘‘mounta
representation of secondary structures as illustrated in
3~b!. Each such mountain corresponds to exactly one sec
ary structure. In the molten phase, the weight of a second
structureS is simply given byquSu. This can be represented i
the mountain picture by assigning a weight ofq1/2 to every
upward and downward step and a weight of 1 to every h
zontal step. Since the only constraints on these mountain
~i! not going below the baseline, and~ii ! returning to the
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baseline at the end, the partition function of an RNA m
ecule of lengthN is then simply that of a random walk ofN
steps, constrained to start from and return to the origin, in
presence of ahard wall at the origin, with the above weight
~Aq or 1! assigned to each allowed step. This partition fun
tion is well known to have the characteristicN23/2 behavior
that we derived formally in the last section@25#.

In this framework, it also becomes obvious why imposi
a minimal hairpin length does not change the universal
havior of RNA at least in this molten phase: If the minim
allowed size of a hairpin iss, this enforces a potentially
strongpenaltyfor the formation of a hairpin, since with ev
ery hairpins bases are denied the possibility of gaining e
ergy by base pairing. This tends to make branchings
favorable and thus leads to longer stems. However, this
ditional constraint translates in the mountain representa
into the rule that an upward step may not be followed by
downward step within the nexts steps. This is clearly alocal
modification of the random walk. Thus, it does not chan
universal quantities although the above mentioned supp
sion of branchings will require much longer sequences
order to observe the asymptotic universal behavior. For
RNA parameters, the crossover length is very long beca
of this effect. For example, it is several hundred nucleotid
for the CAG repeat, and even longer for some other repe

Another characteristic exponent describes the scaling
the ladder sizêh& with the sequence lengthN. As already
mentioned in its definition~15!, ^h& is equivalent to the av-
erage ‘‘height’’ of the midpoint of the sequence in the mou
tain picture. In the molten phase, the random walk analo
immediately yields the result

^h&0;N1/2, ~24!

where ^¯&0 denotes the ensemble average in the mol
phase.

As should be clear from the coarse grained view depic
in Fig. 4, the ensemble of RNA secondary structures in
molten phase can be mapped directly to the ensemble
branched polymers. These branched polymers arerooted at
the basesi 51 andN of the RNA. In this context,u053/2 is
known as the configuration exponent of the rooted branc
polymer @26#. Additionally, from the result~24!, we see that
the ladder length of the branched polymer scales3 as N1/2.
Because of the very visual analogy of the secondary st
tures to a branched polymer, we refer to the configuratio
entropy of the secondary structures as the ‘‘branching
tropy.’’

Finally, the binding probabilitiesPi , j defined in Eq.~10!
depend only on the distanceu i 2 j u in the molten phase, i.e.
Pi , j5p(u i 2 j u). The behavior of this function can be derive

3For a real branched polymer, each branch will have a spa
extension that scales as the square root of its ladder length~in the
absence of excluded volume interaction!. Then the typical spatial
extension of a branched polymer scales asN1/4, a well-known result
for the branched polymer in the absence of self-avoidance@26#.
3-6
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explicitly by inserting the result Eq.~23! for the partition
function into Eq.~10!. Alternatively, one just needs to recog
nize thatp( l ) corresponds in the random walk analogy to t
first-return probability of a random walk afterl steps. In
either case, one finds the result

p~ l !;
l 23/2~N2 l !23/2

N23/2 , ~25!

i.e., the return probability decays with increasing separatil
of the two bases as a power law with the configuration
ponentu053/2. For the pinching free energyDF(N), we
simply setl 5N/2 and obtain

DF05 3
2 kBT ln N ~26!

for largeN, i.e., it scaleslogarithmically in the molten phase
This logarithmic dependence merely reflects the loss
branching entropy due to the pinching constraint and i
manifestation of the configuration exponentu053/2.

III. EFFECT OF SEQUENCE RANDOMNESS:
HIGH-TEMPERATURE BEHAVIOR

There are in principle three different scenarios for t
behavior of long random RNA sequences.~i! Disorder is
irrelevant at any finite temperature, so that the molten ph
description presented in Sec. II B applies to long RNA m
ecules at all temperatures.~ii ! Disorder is relevant at all tem
peratures, and the molten phase description is comple
inadequate.~iii ! There is a finite temperatureTg above which
the molten description of random RNA is correct, while b
low Tg a qualitatively different description is needed. In a
cordance with the statistical physics literature, we will re
to the nonmolten phase as the glass phase, andTg as the
glass transition. The purpose of the study is to determ
which of these three scenarios is actually realized, and
characterize the glass phase if either~ii ! or ~iii ! occurs.

In this section, we study the high-temperature behav
and demonstrate that the molten phase is stable with res
to weak sequence disorder. This ensures that the molten
scription of RNA given in Sec. II B is at least valid at hig
enough temperatures, thereby ruling out scenario~ii !. We
will address the question of whether there is a glass phas
low but finite temperatures in Sec. IV.

A. Numerics

Before we engage in detailed calculations, we want
convince ourselves with the help of some numerics that w
disorder does not destroy the molten phase. To this end
study the observables introduced in Sec. II A 4. We gene
a large number of disorder configurations, i.e., interact
energies« i , j , using the three models introduced in Se
II A 2: sequence disorder, energy disorder, and Gaussian
order as described by Eq.~2!, Eqs.~3! and ~4!, and Eqs.~3!
and ~5!, respectively, withum5umm51. Then, we calculate
the observableŝh& andDF(N) for each disorder configura
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tion at the relatively large temperature ofkBT52um and av-
erage the values obtained over many disorder configurati
In order to keep the numerical effort manageable, we aver
over 10 000 random sequences forNP$10,20,40,80,160,
320%, over 2000 sequences forN5640, and over 1000 se
quences forN51280 andN52560.

Figure 5 shows the results; disorder-averaged quant
are denoted by an overbar throughout the text. We see
the data for̂ h& follow a power law with a fitted exponen
^h&;N0.54, with the exponent value decreasing for larg
N’s. This result is consistent with the prediction Eq.~24! for
the molten phase. Also, the pinching free energy follows
predicted logarithmic behavior Eq.~26! without any notice-
able difference between the three choices of disorder. Ta
together, these results indicate that the three models of
order belong to the same universality class, i.e., the mo
phase description of the uniformly attracting RNA, at hig
temperatures.

B. The replica calculation

Now we will establish the stability of the molten phas
against weak disorder by an analytical argument. We will u
Gaussian disorder characterized by Eqs.~3! and ~5!. As we
have shown above, the different microscopic models of bi
ing energy all yield the same scaling behaviors. With t
uncorrelated Gaussian energies, it is possible to perform
ensemble average of the partition functionZn of n RNA mol-
ecules sharing the same disorder. The disorder-averaged
energy can then in principle be obtained via the ‘‘repli
trick’’ ln Z5limn→0(Zn21)/n, by solving the n-replica
problem@27#.

The n-replica partition function can be written down fo
mally as

FIG. 5. Scaling in the molten phase. These two plots show
dependence of several characteristic quantities of RNA secon
structures on the lengthN of the sequence atkBT52um . Each plot
shows data for three different choices of disorder according to E
~2!, ~4!, and~5!. ~a! shows the scaling of the average size^h& and
the dashed line is the best fit^h&;N0.54 to a power law.~b! shows
the free energy of the largest pinch as defined in Eq.~12!. The
dashed line is, up to an additive constant, the logarithmic beha
3/232 ln N predicted in Eq.~26!. The statistical fluctuations are
smaller than the size of the symbols in both plots. All plots sugg
that the behavior of RNA secondary structures at high temperat
is well described by the molten phase picture and independen
the disorder.
3-7
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Zn5(
$S1%

¯(
$Sn%

expF2 (
k51

n

(
~ i , j !PSk

b« i , j G
5(

$S1%
¯(

$Sn%
)
k51

n

exp@2b«̄uSku#

3expF1

2
b2(

k51

n

(
l 51

n

(
~ i , j !PSk

(
~r ,s!PSl

3~« i , j2 «̄ !~« r ,s2 «̄ !G
5(

$S1%
¯(

$Sn%
)
k51

n

exp@2b«̄uSku#

3expF1

2
b2D (

k51

n

(
l 51

n

uSkùSl uG
5(

$S1%
¯(

$Sn%
)
k51

n

quSku )
1<k, l<n

q̃uSkùSl u

where

q[exp~2b«̄1 1
2 b2D ! and q̃[exp~b2D ! ~27!

are the two relevant ‘‘Boltzmann factors.’’ This effective pa
tition function has a simple physical interpretation: It d
scribesn RNA molecules subject to ahomogeneousattrac-
tion with effective interaction energy«05 «̄2 1

2 bD between
any two bases of the same molecule. As before, this effec
attraction is characterized by the factorq. In addition, there is
an inter-replica attraction characterized by the factorq̃ for
each bondsharedbetween any pair of replicas. The inte
replica attraction is induced by the same sequence diso
shared by all replicas. For example, if the base composi
in one piece of the strand matches particularly well w
another piece, then there is a tendency to pair these pi
together in all replicas. Thus, the inter-replica attraction c
potentially force the different replicas to ‘‘lock’’ togethe
i.e., to behave in a correlated way. Indeed, the distribution
inter-replica correlations, usually measured in terms
‘‘overlaps,’’ is a common device used to detect the existe
of a glass phase in disordered systems@28#.

The full n-replica problem is difficult to solve analytically
We will examine this problem in the regime of smallD,
aiming to resolve the relevancy of disorder in a perturbat
sense. Since the lowest-order term of the fully random pr
lem in a perturbation expansion inD corresponds to the two
replica (n52) problem we will focus on the latter in order t
study the small-D behavior of the full problem. The solutio
of the two-replica problem will also illustrate explicitly th
type of interaction one is dealing with, thereby providin
some intuition needed to tackle the full problem. It turns o
that the two-replica problem can be solved exactly. Here,
outline the salient features of the solution. Details of t
calculation and analysis are provided in the appendixes.
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will find that the two-replica system has a phase transit
between the molten phase in which the two replicas are
correlated and a nontrivial phase in which the two replic
are completely locked together in the thermodynamic lim
The transition occurs at a finite temperatureTc(D) which
approaches zero asD→0. Thus, the effect of weak disorde
is irrelevant at finite temperatures.

Let us denote the two-replica partition functionZ2 for two
strands each of lengthN by G(N11;q̃), where we keep the
dependence onq implicit. Then,

G~N11;q̃!5 (
S1 ,S2PV~N!

quS1u1uS2uq̃uS1ùS2u. ~28!

The key observation which allows us to solve the two-repl
problem is that, for each given pair of secondary structu
the bonds shared by two replicas~hereafter referred to a
‘‘common bonds’’! form a valid secondary structure b
themselves~see Fig. 6.! Thus, we can rearrange the summ
tion over the pairs of secondary structures in the followi
way: We first sum over all possible secondary structures
the common bonds. For a given configuration of the comm
bonds, we then sum over the remaining possibilities of
trareplica base pairings for each replica, with the constra
that no new common bonds are created.

Note that the common bonds partition the diagram int
number of ‘‘bubbles,’’4 shown as the shaded regions in Fi

4The two ends of the sequence must also belong to a bubb
they are not common bonds.

FIG. 6. Grouping of two RNA structures according to their com
mon bonds. Each pair of RNA secondary structures like the one
the left hand side can be classified according to the bonds tha
common to both structures~open circles.! These common bonds b
themselves form an RNA secondary structure~right hand side.!
Thus, the sum over all pairs of secondary structures can be wr
as the sum over all possible secondary structures of the com
bonds. The weight of each common bond structure is then given
the interaction energies of common bonds and the summation
all possibilities of arranging noncommon bonds in the giv
common-bond structure. Since noncommon bonds have to be c
patible with the common-bond structure, the latter sum factori
into independent contributions of all the loops of the common-bo
structure~gray circles.! Each such contribution depends solely o
the number of noncommon-bond bases in each of these loops
3-8
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6. Due to the exclusion of pseudoknots from the valid s
ondary structures, only bases belonging to the same bu
can be paired with each other. Thus, the two-replica parti
function can be written as

G~N11;q̃!5 (
SPV~N!

~q2q̃! uSu )
bubble i of S

Qi~ l i11!,

~29!

where the factorq2q̃ is the weight of each common bond
andQi( l i11) is the sum of all possible intrareplica pairing
of the i th bubble of l i bases inS, with the restriction that
there are no common bonds.

It should be clear thatQi depends on neither the numb
of stems branching out from the bubblei nor the positions of
these stems relative to the bases within the bubble. It
pends onSonly through the number of basesl i in the bubble
and is given by a single functionQ independent ofi. This
function can be written explicitly as

Q~ l 11![ (
S1 ,S2PV~ l !
S1ùS25B

quS1u1uS2u. ~30!

With Eqs. ~29! and ~30!, the two-replica problem is re
duced to an effectivesingle homogeneous RNA problem
with an effective Boltzmann weightq2q̃ for each pairing,
and an effective weightQ for each single-stranded loop. A
described in Appendix A, this problem becomes forma
analogous to that of an RNA molecule in the vicinity of th
denaturation transition, withQ being the weight of a single
polymer loop fluctuating in six-dimensional embeddi
space. The competition between the pairing energy and
bubble entropy leads to a phase transition for the two-rep
problem, analogous to the denaturation transition for a sin
RNA molecule.

The details of this transition are given in Appendix
where the partition function~29! is solved exactly. The exac
solution exploits the relation

Q~N!5G~N;q̃50!, ~31!

which follows from the definitions~28! and ~30!, and turns
Eq. ~29! into a recursive equation forG. The solution is of
the form

G~N;q̃!;N2uzN~q,q̃! ~32!

for largeN, with two different forms foru andz depending
on whetherq̃ is above or below the critical value

q̃c511
1

q2 (
N51

`

NG2~N!~112Aq!22~N21!

. ~33!

Here G(N) is the molten phase partition function, who
large N asymptotics is given by Eq.~23! and whose values
for small N can be calculated explicitly from the recursio
Eq. ~18!. Thus, the actual value ofq̃c can be found for any
given q.
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For q̃,q̃c , we haveu53 and

z5~112Aq!21q2~ q̃21!g1~q!, ~34!

where

g1~q!5 (
N51

`

G2~N!~112Aq!22N, ~35!

according to Eqs.~B10! and ~B12!. In this regime, the two-
replica partition functionG is essentially a product of two
single-replica partition functionsG. Compared to Eq.~23!,
we can identifyu as 2u0 , and z as a modified version o
z0

2[(112Aq)2. Since there is no coupling of the two repl
cas beyond a trivial shift in the free energy per length,f 5
2kBT ln z, we conclude that the disorder coupling is irre
evant. Hence the two-replica system is in the molten phas
this regime.

For q̃.q̃c , we haveu53/2 andz is given as the implicit
solution of an equation involving only single-replica par
tion functions as shown in Eqs.~B17! and ~B20!. Here, the
partition function of the two-replica system is found to ha
the same form as that of the single-replica system in
~23!. This result implies that the two replicas are locked
gether via the disorder coupling, and the molten phase is
longer applicable in this regime.

Of course, as already explained above, only the weak
order limit ~i.e., b2D!1! of the two-replica problem is of
relevance to the full random RNA problem. In this limit,q̃
'11b2D while q̃c is found by evaluating Eq.~33! with q
'e2b; ē. It can be easily verified thatq̃c.1 as long asq is
finite. Thus, in the weak disorder limit, we haveq̃,q̃c , in-
dicating that the molten phase is an appropriate descrip
for the random RNA. Unfortunately, the two-replica calcul
tion cannot be used in itself to deduce whether the mo
phase description breaks down at sufficiently strong disor
or low temperature. Based on this analysis, we cannot c
clude whether the type of phase transition obtained for
two-replica problem is present in the full problem.

IV. EFFECT OF SEQUENCE RANDOMNESS:
LOW-TEMPERATURE BEHAVIOR

Having established the validity of the molten phase d
scription of random RNA molecules at weak disorder or hi
temperatures, we now turn our focus onto the lo
temperature regime. First, we will give an analytical arg
ment for the existence of a glass phase at low temperatu
Then we will present extensive numerical studies confirm
this result and characterizing this glass phase.

A. Existence of a glass phase

We will start by showing that the molten phase cann
persist for all temperatures down toT501. To this end, we
will assume that long random RNA is in the molten phase
all temperatures, i.e., that the partition function for any su
strand of large lengthL@1 is given by

Z~L !5A~T!L23/2exp@2b f 0~T!L# ~36!
3-9



em
n

gy
io
lt

rg
m

l

e

n
th

on

nc

nt

res
he
nts

y
y of
y
e

lly
of
d

l
f

t
ty

ow
e
l-

A 2

s
the

ber
s 1.
ses,
ain
c-

t at

on

-
ic
rm
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with some effective temperature-dependent prefactorA(T)
and free energy per lengthf 0(T). Then we will show that
this assumption leads to a contradiction below some t
peratureT* .0. This contradiction implies that the molte
phase description breaks down at some finiteTg>T* . To be
specific, we will consider the sequence disorder model~2! in
this analysis.

The quantity we will focus on is again the free ener
DF(N) of the largest possible pinch. Under the assumpt
that the random sequences are described by the mo
phase, it is given by

DF~N!5 3
2 kBT ln N ~37!

for large N and all T, independentlyof the values of the
effective prefactorA(T) and the free energy per lengthf 0(T)
@see Eq.~26!#.

On the other hand, we can study this pinching free ene
for each given sequence of bases drawn from the ense
of random sequences. For each such sequence, we can
for a continuous segment ofl !N Watson-Crick pairsbi-bj ,
bi 11-bj 21 ,...,bi 1 l 21-bj 2 l 11 where the basesbi ,...,bi 1 l 21
are within the first half of the molecule and the bas
bj 2 l 11 ,...,bj are in the second half@see Fig. 7~a!#. For ran-
dom sequences, the probability of finding such exceptio
segments decreases exponentially with increasing lengl,
with the largestl in a sequence of lengthN being typically

l 5l21 ln N. ~38!

For exact complementary matches, the proportionality c
stant is known to bel5 ln 2 @29#.

Now, we calculate the pinching free energy

DF~N!5Fpinched2Funpinched ~39!

by evaluating the two terms separately. The partition fu
tion for the unpinched sequence containsat leastall the con-
figurations in which the two complementary segme
bi ,...,bi 1 l 21 and bj 2 l 11 ,...,bj are completely paired@see
Fig. 7~b!#. Thus,

Funpinched<Fpaired ~40!

FIG. 7. Finding a good match in an RNA sequence.~a! shows
the positions of two pieces with exactly complementary bases,
of which is between positions 2 andN/2 and the other of which is
between positionsN/212 andN. Such a piece of lengthl; ln N can
be found for almost all sequences.~b! shows how restricting con
figurations to those in which the good match forms Watson-Cr
base pairs splits the molecule into two loops, which can still fo
base pairs within the loops independently of each other.
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whereFpaired is the free energy of the ensemble of structu
in which the two complementary segments are paired. T
latter is the sum of the free energy of the paired segme
and those of the two remaining substrandsbi 1 l ,...,bj 2 l of
length L15 j 2 i 22l 11 and bj 11 ,...,bi 21 ~wrapping
around the end of the molecule! of lengthL25N1 i 2 j 21,
i.e.,

Fpaired52 lum1~N22l ! f 01 3
2 kBT@ ln~L1!1 ln~L2!#.

~41!

The free energyFpinchedin the presence of the pinch is, b
the assumption of the molten phase, the interaction energ
the pinched base pairb1-bN/211 plus the molten free energ
of the substrandb2 ,...,bN/2 and the molten free energy of th
substrandbN/212 ,...,bN , i.e., according to Eq.~36!

Fpinched5 f 0~T!N123 3
2 kBT lnN ~42!

up to terms independent ofN. Combining this with Eqs.~39!,
~40!, and~41!, we get

DF~N!> 3
2 kBT@2 lnN2 ln L12 ln L2#1 l @um12 f 0~T!#.

~43!

Using the result~38! and the fact thatL1 andL2 are typically
proportional toN, we finally obtain

DF~N!>@um12 f 0~T!#l21 ln N ~44!

for largeN. This is consistent with Eq.~37! only if

3
2 kBT>l21@um12 f 0~T!#. ~45!

Now, f 0(T) is a free energy and is hence a monotonica
decreasing function of the temperature. Thus the validity
the inequality~37! depends on the behavior of its right han
side at low temperatures. AsT→0, the inequality can hold
only if s[112 f 0(T50)/um<0. Since the average tota
energy atT50 is um times the average total number o
matched pairs of a random sequence, then 2f 0(0)/um is sim-
ply the fraction of matches ands is the fraction of bases no
matched. Clearly,s cannot be negative, and the inequali
~37! must fail at some finite temperature unlesss50.

We can make a simple combinatorial argument to sh
that in most cases the fractions of unbound bases must b
strictly positive. To illustrate this, let us generalize the ‘‘a
phabet size’’ of the sequence disorder model of Sec. II
from 4 to an arbitrary even integerK>2. We will still adopt
the energy rule~2! where each of theK bases can form a
‘‘Watson-Crick’’ pair exclusively with one other base. Let u
estimate the number of possible sequences for which
fraction of unmatched basess is zero in the limit of long
sequence lengthN at T50. Since atT50 only Watson-Crick
~WC! pairs can be formed, we need to count only the num
of sequences for which the fraction of WC paired bases i
This means that, except for a subextensive number of ba
all have to be WC paired to each other. From the mount
picture ~Fig. 3!, it is clear that the number of possible se
ondary structures for such sequences must scale as 2N, since
the fraction of horizontal steps is nonextensive, so tha

e

k
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each step there are only the possibilities for the mountai
go up or down. For each of theN/2 pairings in one of these
2N structures, there areK ways of choosing the bases
satisfy the pairing. So for each structure there areKN/2 ways
of choosing the sequence that would guarantee the struc
Since there are a total ofKN sequences, it is clear that th
fraction of sequences with all~but a subextensive number o!
WC pairs becomes negligible if

~2AK !N,KN. ~46!

Thus, forK>6, we must haves.0.
For K52, the left hand side of Eq.~46! grows faster than

its right hand side. This reflects the absence of frustratio
this simple two-letter model as already discussed at the
of Sec. II A 2. One way to retain frustration is to introdu
additional constraints, e.g., the minimal hairpin length us
in Ref. @18#. With this constraint, a structure with a sube
tensive number of unmatched bases can contain only a
extensive number of hairpins. In the mountain picture, t
means that, except for a subextensive number of steps,
is only one choice to go up or down at every step. T
changes Eq.~46! to KN/2,KN. It ensures frustration sinc
s.0 for all K. Since a minimal length of three bases
necessary in the formation of a real hairpin, real RNA
certainly frustrated by this argument. The random seque
model that we study in this paper is marginal sinceK54 and
there is no constraint on the minimal hairpin length. In th
case, all the prefactors on the two sides of Eq.~46! ~e.g., the
overcounting of sequences that support more than one s
ture! must be taken into account. We will not undertake t
effort here, but will verify numerically in Sec. IV C thats
.0 in this case also.

In all cases withs.0, it follows that there is some uniqu
temperatureT* below which the consistency condition~45!
breaks down, implying the inconsistency of the molten ph
assumption in this regime. From this we conclude that th
must be a phase transition away from the molten phas
some critical temperatureTg>T* .0. The precise value o
the boundT* depends onl, which in turn depends on th
stringency of the condition we impose on the rare match
segments. For instance, if we relax the condition of ex
complementarily between two segments to allow for matc
within each segment, then the constantl will be reduced
from ln 2 and the value ofT* will increase. This will be
discussed more in Sec. IV C.

B. Characterization of the glass phase

The above argument does not provide any guidance on
properties of the low-temperature phase itself. In order
characterize the statistics of secondary structures forme
low temperatures, we redo the simulations reported in S
III A at kBT50.025um , setting the energy units again b
choosingum5umm51. At this temperature, an unbound ba
pair is penalized with a factore40 relative to a Watson-Crick
base pair, and a non-Watson-Crick base pair is penal
even more. Thus, only the minimal energy structures cont
ute ~for the sequence lengths under consideration here!, and
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we may regard this effectively as atT50. As in Sec. III A,
we average over 10 000 realizations of the disorder forN
P$10,20,40,80,160,320%, over 2000 realizations forN
5640, and over 1000 realizations forNP$1280,2560%.

Figure 8 shows the results for the ladder size^h& of the
structures for the three models of disorder. The ladder s
still scales algebraically with the length of the sequenc
with numerically determined exponents ranging from^h&
;N0.65 to ^h&;N0.69 for the different choices of disorder
The results are clearly different from the square root beh
ior ~dotted line! expected of the molten phase. Thus th
result reaffirms our expectation that the secondary struc
of a random RNA sequence at zero temperature indeed
longs to a phase that is different from the molten phase.

1. A criterion for glassiness

A key question in characterizing the thermodynamic pro
erties of disordered systems is whether the zero-tempera
behavior persists for a range of finite temperatures. If it do
then the system is said to have a finite-temperature g
phase. One way to address this question is to study the o
lap between different replicas of the RNA molecule as m
tioned earlier. If a nontrivial distribution of these overlap
with significant weight on large overlaps persists into fin
temperatures, then the finite-temperature glass phase e
This approach was taken by previous numerical stud
@16,18–20#. Unfortunately, the results are inconclusive a
even contradictory due to the weakness of the propo
phase transition—only the fourth temperature derivative
the free energy seems to show an appreciable singula
Moreover, due to limitations in the sequence lengths prob
it was difficult to get a good estimate of the asymptotic b
havior of the overlap distribution.

FIG. 8. Scaling of the average size^h& of secondary structures
in the low-temperature phase with the lengthN of the sequences
The plot shows data for three different choices of disorder acco
ing to Eqs.~2!, ~4!, and~5! at kBT50.025um . The average system
size follows a power law. However, the best fit of the data
sequence disorder atN>160 to a power law indicated by th
dashed line leads to an exponent of^h&;N0.69. The corresponding
fits for energy and Gaussian disorder yield exponents of^h&
;N0.69 andN0.65, respectively. This is distinctly different from th
square root behavior of the molten phase indicated by the do
line. The comparison of this plot with its counterpart in Fig. 5~a!
suggests that the behavior of RNA secondary structures at low
peratures is different from the molten phase.
3-11
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In our study, we adopt a different approach based on
droplet theory of Huse and Fisher@30#. In this approach, one
studies the ‘‘large-scale low-energy excitations’’ about t
ground state. This is usually accomplished by imposin
deformation over a length scalel @1 and monitoring the
minimal ~free! energy cost of the deformation. This cost
expected to scale asl v for large l. A positive exponentv
indicates that the deformation costgrows with increasing
size. If this is the case, the thermodynamics is dominated
a few low ~free! energy configurations in the thermodynam
limit, and the statistics of the zero-temperature behavior p
sists into finite temperatures. On the other hand, if the ex
nentv is negative, then there are a large number of confi
rations that have low overlap with the ground state
whose energies are similar to the ground state energy in
thermodynamic limit. At any finite temperatureT, a finite
fraction of these configurations@i.e., those withinO(kBT) of
the ground state energy# will contribute to the thermodynam
ics of the system. The zero-temperature behavior is cle
not stable to thermal fluctuations in this case, and no ther
dynamic glass phase can exist at any finite temperature.
analysis of the previous section indicates the existence
glass phase; thus we expect to find that the excitation en
increases with increasing deformation size.

It should be noted that this criterion for glassiness
purely thermodynamical in nature and does not make
statement aboutkinetics. A system that is not glassy thermo
dynamically can still exhibit very large barriers between t
many practically degenerate low-energy configurations, le
ing to akinetic glass. A study of the kinetics of RNA, e.g., in
terms of barrier heights, is naturally dependent on the cho
of allowed dynamical pathways to transform one RNA s
ondary structure into another one@31–34#. Since this is a
highly nontrivial problem, we will restrict ourselves to the
modynamics and use the droplet picture explained abov
our criterion for the existence of a glass phase.

2. Droplet excitations

According to the criterion for glassiness just present
our goal is to determine the value of the exponentv for
random RNA molecules numerically. To this end, the cho
of large-scale low-energy excitations needs some car
thought. As in every disordered system, there is a very la
number of structures which differ from the minimal ener
structure by only a few base pairs and which have an ene
only slightly higher than the minimum energy structur
These structures are clearly not of interest here. Instead
need to find a controlled way of generating droplet exc
tions of various sizes.

We propose to use the pinching method introduced in S
II A 4 as a way to generate the deformation, and regard
difference between the minimal energy pinched structure
the ground state structure as the droplet excitation. There
several desirable features about these pinch-induced d
mations. First, they give a convenient way of controlling t
size of the deformation. If (i ,i 8) is a base pair that is boun
anyway in the ground state, pinching this base pair does
have any effect andDFi ,i 850. If we pinch basei with some
other basej Þ i 8, then we force at least a partial deformatio
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of the ground state, for bases in the vicinity ofi, i 8, and j.
This is illustrated in Fig. 9 with the deformed region ind
cated by the shading. As we move the pinch further aw
from the ground state pairing, we systematically probe
effect of larger and larger deformations~provided that a
pinch induces only local deformation as we will show!. Sec-
ond, the minimal energy or the free energy of the second
structures subject to the pinch constraint is easily calcula
numerically by the dynamic programming algorithm
shown in Eqs.~10! and~11!. Third, the pinching of the base
in a sense mimics the actual dynamics of the RNA molec
at low temperatures. In order for the molecule to transfo
from one secondary structure to another at a tempera
where all matching bases should be paired, the bases ha
make local rearrangements of the secondary structure
much the way depicted in Fig. 9@33#. Thus, the pinching
energy provides the scale of variation in the local ene
landscape for such rearrangements.5 Finally, ‘‘pinching’’ of a
real RNA molecule can be realized in the pulling of a lo
molecule through a pore@35#.

A key question as to the utility of these pinch deform
tions is whether the deformation is confined to the local
gion of the pinch as depicted in Fig. 9 or whether it involv
a global rearrangement of the structure. To test this asp
we numerically study the changes in pinch free energy a
function of the ‘‘size’’ of a pinch. Here, the definition of th
pinch size needs some thought. Consider a specific sequ
whose minimal energy structure isS* . If the binding partner
of basei is basei 8 in the minimal energy structure, a natur
measure for the size of a pinch (i , j )¹S* with i , j , i 8
would be the ladder distancehi , j between basei and basej;

5While local rearrangements will proceed only by forming diffe
ent Watson-Crick base pairs, we will in our study determine
pinching free energies forall pinches irrespective of whether or no
they are Watson-Crick base pairs. Since we take the ensemble
erage over many sequences this amounts only to an irrelevant
stant contribution̂ « i j &2um5 «̄2um to the pinch free energies.

FIG. 9. Deformation of a minimal energy structure by pinchin
The two basesi and i 8 ~open circles! form a base pair in the indi-
cated minimal energy structure~a!. Thus, forcing these two bases t
be bound by pinching does not affect the structure at all. Pinch
of ( i , j ), on the other hand, will lead to a local rearrangeme
~shaded region! of the structure as shown in~b!. The effect of such
a pinch depends on the number of base paris of the minimal en
structure with which the pinch is incompatible. As indicated by t
arrow in ~a!, this number is given by the ladder distancehi , j be-
tweeni and j; in this examplehi , j53.
3-12
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see Fig. 9. From the mountain representation@Fig. 3~b!#, it is
easy to see that this is just the difference between the res
tive ladder distances of basej and basei from base 1 as
defined in Eq.~13!, i.e., hi , j5hj (S* )2hi(S* ). To find how
the excitation energy depends on the pinch size, we just n
to follow how the pinching free energyDFi , j depends statis
tically on the sizehi , j . To do this, we choose a large numb
of random sequences, and determine the minimal en
structureS* for each of these sequences. Then we comp
the pinch free energiesDFi , j and the pinch sizehi , j for all
possible pinches~i,j! for each sequence. Afterwards, we a
erage over allDFi , j ’s with the same pinch sizehi , j over all
of the generated random sequences to obtain the functio

dF~dh![(
i , j

DFi , jddh,ḣi , jY (
i , j

ddh,hi , j
. ~47!

The results obtained atkBT50.025um for a large range of
sequence sizes fromN580 to 2560 are shown in Fig. 10~a!.
We see that the data for differentN’s fall on top of each other
for small dh’s with

dF;~dh!0.27. ~48!

FIG. 10. Pinching free energy as a function of the numberdh of
minimal energy structure base pairs that are incompatible with
pinch for random sequence disorder atkBT50.025um . ~a! shows
the raw data. For smalldh the pinching free energy is independe
of the lengthN of the molecule and obeys a power lawdF(dh)
;(dh)0.27 ~dashed line!. This is consistent with the expectation th
pinching at smalldh leads to local rearrangements of the second
structure. The apparent nonmonotonic behavior at largedh is due to
the small number of sequences in which such a value ofdh is
realized.~b! shows the same data, but the scaling ofdh with N is
chosen in accordance with Fig. 8 while the scaling of the pinch
free energy is chosen in accordance with the power law depend
estimated above.
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This behavior explicitly shows that the pinch deformation
a local deformation. In particular, we see that for smalldh’s
the free energy cost isindependentof the overall lengthN of
the molecule.

It is interesting to see at whatdh the entire sequence i
involved. One expectsdhmax;^h&;N0.69 since^h& gives the
typical scale of the maximum ladder length. To test this,
normalizeddh by N0.69 anddF by N0.19 @such that the rela-
tion ~48! is preserved for smalldh’s#. The result is shown in
Fig. 10~b!. We see that the data are approximately collap
onto a single curve, indicating that pinching is indeed a go
way of imposing a controlled deformation from the grou
state.

3. A marginal glass phase

The scaling plot of Fig. 10~b! indicates strongly that the
energy associated with the pinch deformationincreaseswith
increasing size of the deformation, i.e.,dF;(dh)0.27

;N0.19. However, the effective exponent involved is sma
making the result very susceptible to finite-size effects.
order to decide on the glassiness of the system, we wan
focus on the energy scales associated with the largest p
deformations from the ground state. Assuming that there
only a single energy scale associated with large pinches
again study the free energyDF(N) of the largest pinch as
defined in Eq.~12! and average this over the ensemble
sequences.6

The results are shown in Fig. 11~a! for the three models of
disorder. Although a weak power law dependence ofDF(N)
on N cannot be excluded, the fitted exponents obtained
the three models are different from each other, ranging fr
0.09 to 0.19. This is a strong sign of concern, since the
ponents are expected to be independent of details of
models. In Fig. 11~b!, the same data are plotted on a lo
linear scale. The data fall reasonably on a straight line
each of the models~especially for largeN!, suggesting that
the pinching free energy may actually increase logarith
cally with the sequence length, similar to the expected
havior in the molten phase. However, in this case, the p
actor of the logarithm depends on the choice of the mo
and is much larger than the factor3

2 kBT expected of the
molten phase; see Eq.~26!. For example, for the numerica
data obtained atkBT50.025um , the prefactor is approxi-
mately 0.9um for the sequence disorder model, while th
expected slope for the molten phase is 0.0375um at this tem-
perature. Having different logarithmic prefactors for the d
ferent models is not a concern, since a prefactor is a non
versal quantity. Thus, our numerical results favor
logarithmically increasing pinch energy, with a prefact

6In order to ensure that choosing the largest pinch as represe
tive is justified, we studied in addition the ensemble average of
maximalpinch free energyDFmax(N)[max1<i,j<NDFi,j . This quan-
tity yields an upper bound estimate of the energy associated
large-scale pinches for each sequence lengthN. We find DFmax(N)
andDF(N) to have the same scaling behavior, and thus we pre
data only for the latter.
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R. BUNDSCHUH AND T. HWA PHYSICAL REVIEW E65 031903
much exceedingkBT at low temperature.
What does this tell us about the possible glass phas

the random RNA? In order to answer this question,
should remind ourselves that rather special deformations
chosen in this study. For our choice of pinch deformatio
we observe a logarithmic dependence of the gap between
ground state energy and the energy of the excited config
tions on the length of the sequence or deformation. T
corresponds to the marginal case of the droplet theory wh
the exponentv vanishes. Since the pinching free energ
increase with increasing length, we cannot exclude a g
phase in the casev50. We can say, though, that the increa
of the excitation energy with length is at most a power l
with a very small exponent and most probably even less t
any power law. Therefore, a possible glass phase of RNA
to be very weak. If it turns out that the excitation energy
indeed a logarithmic function of length, with a nonvanishi
prefactor asT→0 as our numerics suggest, then the lo
temperature phase would be categorized formally as amar-
ginal glass phase, analogous to behaviors found in so
well-studied models of statistical mechanics@36–38#. In any
case, we should note that the actual difference in the exc
tion energy is only a factor of 4 across two and one-h
decades in length. Thus the glassy effect will be weak
practical purposes. On the other hand, the weak depend
of the excitation energy on length may be the underly
cause of discrepancies in the literature@18–20# regarding the
existence of the glass phase for random RNA.

FIG. 11. Pinching free energies at low temperature.~a! shows a
double-logarithmic plot with fits to power laws for the data wi
N>160. The exponents areN0.18, N0.09, andN0.19 for the sequence
energy, and Gaussian disorder, respectively.~b! shows the same
data in a single-logarithmic plot together with the best fits to
logarithmic dependence onN. The statistical error of the data poin
is about the size of the symbols for largeN and smaller than that fo
N<640. Due to the apparent systematic bending of the data in
double-logarithmic plot~a!, we conclude that a logarithmic depen
dence fits the data better, although we cannot exclude a powe
behavior with a very small power.
03190
of
e
re
,
he
a-
is
re
s
ss

n
as

-

e

a-
lf
r
ce

g

C. Estimation of the phase transition temperature

Now that we have studied in great detail the behavior
random RNA in the low- and high-temperature phases,
describe its behavior at intermediate temperatures. To
end, we again study the pinch free energiesDF(N) defined
in Eq. ~12!, but this time over a large range of temperatur
We concentrate on the sequence disorder model Eq.~2! with
um5umm51, and study sequences of lengths up toN
51280.

From Secs. II B 3, III A, and IV B 3, we know that th
pinch free energyDF(N) depends logarithmically on the se
quence lengthN at both low and high temperatures. Indee
this logarithmic behavior seems to hold forall temperatures
studied. The data for each temperature can easily be fitte
the form

DF~N!5a~T!ln N1c~T!. ~49!

The prefactora(T) is found to depend on temperature in
nonmonotonic way as shown in Fig. 12. The figure conta
values ofa(T) extracted by fitting the data forN>160 to the
form Eq. ~49!. The uncertainty of this fit is on the order o
the size of the symbols or smaller. For high temperatures,
find a(T)' 3

2 kBT ~dashed line in Fig. 12! as expected for the
molten phase. At low temperatures, it starts from a fin
value of the orderum and decreases linearly with temper
ture, asa(T)'0.97um22.7kBT ~dotted line in Fig. 12!. If
we identify the glass transition temperatureTg as the inter-
section of the dashed and the dotted lines, we get

kBTg'0.25um . ~50!

It is interesting to compare this estimate with the low
boundT* for the glass transition temperature given in Se
IV A. According to the consistency condition~45!, this lower
bound is defined by

l21@um12 f 0~T* !#5 3
2 kBT* ~51!

e

aw

FIG. 12. Prefactora(T) of the logarithmic dependence ofDF
on N for random RNA sequences generated by the sequence d
der model: At high temperatures, the prefactor indicated by
circle is well described by the dashed line (3/2)kBT expected of the
molten phase. At low temperatures, it again has a linear tempera
dependence and is empirically fitted by the dotted line 0.97um

22.7kBT. The numerical uncertainty ina(T) is of the order of or
smaller than the size of the symbols.
3-14
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with l5 ln 2. It is necessary to determine the temperat
dependence of the quantityum12 f 0(T) on the left hand side
of this equation numerically. To do this, we measure the to
free energy of each sequence generated. Averaging these
energies over all the sequences of a given lengthN and tem-
peratureT, and dividing the results by the respective leng
N, we obtain an estimatef 0(T;N) of the free energy pe
length which approaches the desiredf 0(T) for largeN.

Figure 13 shows how these estimates depend on the
quence lengthN for the lowest temperaturekBT50.025um
studied. Instead of the free energy per length itself, the fig
shows the fraction of unbound basess(N)5112 f 0(T
'0;N)/um . For short sequences these estimates sho
clear dependence on the sequence lengthN. This can be un-
derstood in terms of sequence-to-sequence fluctuations in
maximum number of possible pairings, due to fluctuations
the actual number of each type of base present in a g
sequence, even if all four bases are drawn with equal p
ability. This effect can be quantified by assuming that ther
no frustration for smallN, i.e., for any given sequence of th
four basesA, C, G, and U, a secondary structure with th
maximal number of Watson-Crick base pairs can be form
If we denote bynX the number of times that the baseX
appears in the sequence, the maximal numberM of pairings
is given byM5min$nA ,nU%1min$nG ,nC%. The fraction of un-
bound bases 122M /N due to this effect can be compute
straightforwardly by approximating the multinominal distr
bution of nA2nU by an appropriate Gaussian distributio
with the result

12
2M

N
'2/ApN. ~52!

We expect this effect to be responsible for the increase
s(N) found in Fig. 13. Indeed, this effect, as indicated by t
dashed line in the figure, explains theN dependence ofs(N)
well for N,100. However, we also see from the figure
clear saturation effect at largeN. This saturation reflects th
finite fraction of unbound bases, which is a frustration eff
forced upon the system through the restriction on the typ
allowed pairings in the allowed secondary structure. The
bound fractions'0.08 isfinite asymptotically as expecte

FIG. 13. Sequence length dependence of the fraction of
bound basess(N)5112 f 0(T'0;N)/um . The data shown are
taken atkBT50.025um . For smallN they are dominated by the
statistical fluctuations in the number of bases according to Eq.~52!
~the dashed line!. At largeN, they saturate to a positive constant
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from Sec. IV A. Note that this value is remarkably small,
it implies that in the ground state structure of our toy rand
sequence more than 90% of the maximally possible b
pairs are formed. But this is an artifact of the very simp
energy rule used in our toy model. This fraction certain
will become smaller if the realistic energy rules are us
making the system more frustrated and hence more glas

In order to obtain the temperature dependence of
quantity 112 f 0(T)/um on the left hand side of Eq.~51!, we
will use its value atN51280 as an estimate of its asymptot
value. The results are shown in Fig. 14. The behavior at
temperatures can be described by a linearly decreasing f
tion, shown as the dotted line in Fig. 14. According to E
~51!, the temperatureT* is obtained as the intersection o
this curve and3

2 lkBT/um , shown as the dashed line in Fig
14 for l5 ln 2. We find

kBT* '0.066um ~53!

which is consistent with the estimate~50!, but is a rather
weak bound. Improved bounds onTg can be made by relax
ing the condition of perfect complementarity of the two se
ments imposed in Sec. IV A. This leads to larger values
the prefactorl21 in Eq. ~51!, and hence a smaller slope fo
the dashed line in Fig. 14, and a larger value ofT* . While
the details of improved bounds will be discussed elsewh
let us remark here that from Fig. 14 it is clear that, no ma
what the slope of the dashed line becomes, we will ne
haveT* larger than the temperature ofkBT'0.22um where
the quantity 112 f 0(T)/um goes below zero. Thus, thes
estimates will always be consistent with the observed g
transition temperature ofkBTg'0.25um .

Moreover, we note that the low-temperature behavio
12 f 0(T)/um'0.08920.31kBT/um , as indicated by the dot
ted line in Fig. 14, appears to be roughly related to the

n- FIG. 14. Estimation ofT* . The symbols show numerical est
mates of the quantity 112 f 0(T)/um for different temperatures. The
estimates are obtained by averaging the numerically determ
free energy of 1000 random sequences of lengthN51280 generated
by the sequence disorder model Eq.~2! with um5umm51. The
low-temperature behavior can be described reasonably well by
expression 0.08920.31kBT/um ~dotted line!. The consistency con-
dition ~45! for the molten phase breaks down when this line int
sects (3/2)ln(2)kBT/um ~dashed line!. This yieldskBT* '0.066um as
a lower bound for the glass transition temperature of this syste
3-15
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R. BUNDSCHUH AND T. HWA PHYSICAL REVIEW E65 031903
havior of a(T) ~dotted line in Fig. 12! in the same tempera
ture range, by a single scaling factor of approximately 0
Thus, it is possible that

a~T!'l21@um12 f 0~T!# ~54!

if it turns out thatl21'0.1 for T,Tg . If this is the case,
then it means the procedure we used to estimate the p
energy in Sec. IV A is quantitatively correct, implying th
the ground state of a random RNA sequence indeed con
of the matching of rare segments independently at e
length scale. It will be useful to pursue this analysis furth
using a renormalization group approach similar to that de
oped for the denaturation of heterogeneous DNA by Ta
and Chate´ @39#.

V. SUMMARY AND OUTLOOK

In this manuscript, we studied the statistical properties
random RNA sequences far below the denaturation trans
so that bases predominantly form base pairs. We introdu
several toy energy models which allowed us to perform
tailed analytical and numerical studies. Through a tw
replica calculation, we show that sequence disorder is pe
batively irrelevant, i.e., an RNA molecule with wea
sequence disorder is in a molten phase where many sec
ary structures with comparable total energy coexist. A
merical study of the model at high temperature recovers s
ing behaviors characteristic of the molten phase. At very l
temperatures, a scaling argument based on the extrema
tistics of rare matches suggests the existence of a diffe
phase. This is supported by extensive numerical res
Forced deformations are introduced by pinching dist
monomers along the backbone; the resulting excitation e
gies are found to grow very slowly~i.e., logarithmically!
with increasing deformation size. It is likely that the low
temperature phase is a marginal glass phase. The interm
ate temperature range is also studied numerically. The t
sition between the low-temperature glass phase and the h
temperature molten phase is revealed by a change in
coefficient of the logarithmic excitation energy, from bein
disorder dominated to being entropy dominated.

From a theoretical perspective, it would be desirable
find an analytical characterization of the low-temperat
phase. If the excitation energy indeed diverges only logar
mically, one has the hope that this may be possible, e.g.
the replica theory, as was done for another well-kno
model of statistical physics@37#. It should also be interesting
to include the spatial degrees of freedom of the polym
backbone~via the logarithmic loop energy!, to see how se-
quence disorder affects the denaturation transition. Ano
direction is to include sequencedesignwhich biases a spe
cific secondary structure, e.g., a stem loop@17#. From a nu-
merical point of view, it is necessary to perform simulatio
with realistic energy parameters to assess the relevant
perature regimes and length scales where the glassy e
takes hold. To make potential contact with biology, o
needs to find out whether a molten phase indeed exists
tween the high-temperature denatured phase and the
temperature glass phase for a real random RNA molec
03190
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and which phase the molecule is in under normal physiolo
cal conditions. Finally, it is very important to performkinetic
studies to explore the dynamical aspects of the glass ph
Despite the apparent weakness of the thermodynamic gla
ness, the kinetics at biologically relevant temperatures is
pected to be very slow for random sequences@40#.
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APPENDIX A: HEURISTIC DERIVATION OF THE
TWO-REPLICA PHASE TRANSITION

Before we describe the exact solution for the two-repl
problem, as defined by the partition functionG in Eq. ~29!
and the bubble weightQ in Eq. ~30!, we first provide here a
heuristic derivation of the qualitative results. This main
serves to give a flavor of the two-replica problem in t
language of theoretical physics.

To this end, we define the quantityP(N) to be the parti-
tion function over all two-replica configurations of a s
quence of lengthN21 under the constraint that base 1 a
baseN21 form a common bond. It is easy to see that

P~N!5q̂G~N22;q̃! ~A1!

where we set

q̂[q2q̃. ~A2!

Thus, the critical behavior ofG(N;q̃) is identical to the criti-
cal behavior ofP(N), which we will study in the following.

Due to the no-pseudoknot constraint of the second
structures,P(N) has a very simple structure,

P~N11!5q̂Q~N21!1 (
l 1 ,l 2 ,n1

q̂Q~ l 11 l 211!P~n111!

3d l 11 l 21n1 ,N22

1 (
l 1 ,l 2 ,l 3 ,n1 ,n2

q̂Q~ l 11 l 2

1 l 311!P~n111!

3P~n211!d l 11 l 21 l 31n11n2 ,N221¯ , ~A3!

as illustrated in Fig. 15. To simplify the above equation, it
useful to introduce thez transforms

P̂@m#5 (
N51

`

P~N!e2mN,
3-16
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Q̂@y#5 (
N51

`

Q~N!e2yN

of P andQ. Now, applying thez transform to both sides o
Eq. ~A3!, we obtain

P̂@m#e2m5q̂E dy

2p i
Q̂@y#K̂@y,m#$11K̂@y,m#P̂@m#e2me2y

1~K̂@y,m#P̂@m#e2me2y!21¯% ~A4!

where

K̂@y,m#5
1

e2y1m21
, ~A5!

and the inverse transformQ( l )5*(dy/2p i )Q̂@y#eyl was
used.

Equation~A4! can be simplified greatly to the following
form:

P̂@m#e2m5q̂E dy

2p i

Q̂@y#

K̂21@y,m#2P̂@m#e2me2y
. ~A6!

This is reminiscent of the well-known Hartree solution to t
f4 theory, or equivalently the self-consistent treatment of
self-interacting polymer problem@41#, if we identify q̂ as the

interaction parameter andK̂@y,m# as the ‘‘propagator.’’ The
usual form of the Hartree equation,

P̂@m#5q̂E ddk

~2p!d

1

k21m2P̂@m#
~A7!

corresponds to the small-y, small-m limit of Eq. ~A6!, with-y
playing the role of the square of the ‘‘wave number’’k. Note

thatQ̂@y# plays the role of the density of~spatial! states, i.e.,

dyQ̂@y#5ddk/(2p)d, whered denotes thedimensionalityof
the ‘‘embedding space.’’

In the context of RNA, de Gennes used this approach
describe the denaturation of uniformly attracting RNA mo
than 30 years ago@15#. Recently, this approach has be
extended by Moroz and Hwa to study the phase diagram

FIG. 15. Recursion equation for the restricted partition funct
P(N11): While the first and last of theN bases described b
P(N11) always form a base pair, this outermost base pair can
followed by a loop with 0, 1, 2, . . . outgoing stems. Each of th
stems is described byP itself while the loop is characterized by it
total length, which can be split into the different piecesl i in differ-
ent ways.
03190
e
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RNA structure formation@22#. The analysis of a self-
consistent equation of the type~A6! is well known @22,41#.

The analytical properties ofP̂@m# depend crucially on the

form of Q̂@y#. Let the singular part ofQ̂ be

Q̂sing}~y2yc!
a21 ~A8!

where yc is the position of the singularity ofQ̂@y#. @Note
thata5d/2 by comparing the forms of the Hartree equatio
~A6! and ~A7!.# For 1,a,2, there is only one solution fo

all q̂.0, with a square root singularity inP̂@m# at some
finite value ofm. For a.2, there are two possible solution
depending on the value ofq̂. The square root singularity
exists forq̂ exceeding some critical value7 q̂c(q).0, while
for q̂,q̂c(q) the square root singularity disappears a

P̂@m# is governed by the singularity ofQ̂ given in Eq.~A8!.
Performing the inverse transform and using Eq.~A1!, we get

G(N;q̃);N2 ûzN wherez is a nonuniversal parameter give
by the location of the singularity, while the exponentû char-
acterizes the phase of the system and is given by the si

larity of P̂@m#: We haveû53/2 if P̂@m# is dominated by the

square root singularity andû5a if P̂@m# is dominated by

Q̂.
The interpretation of the two phases withû53/2 anda is

straightforward. The phase withû53/2 describes the usua
RNA secondary structure@see Eq.~23!#; here the bubbles
described byQ are irrelevant. In the other phase, the res
that û5a indicates that base pairing is not relevant and
system behaves as a single bubble. In the context of
original two-replica problem, the irrelevancy of the bubbl
in the û53/2 phase indicates that the two replicas are lock
together, behaving as a single replica in this phase. In
other phase, the attraction of the common bonds is irrelev
and the two replicas become independent of each other.

As explained in Sec. III B, the purpose of the two-repli
calculation is to determine whether the inter-replica attr
tion, characterized byq̂ here, is irrelevant, i.e., whether th
system will not yet be in theû53/2 phase for a value ofq̂
*q231. This is possible only ifq̂c(q).0. From the solution
of the problem described above, this depends crucially on

singularity of Q̂, specifically, on whethera.2. The diffi-

culty in ascertaining the form ofQ̂ lies in the no-common-
bond constraint~i.e.,S1ùS25B! in the definition ofQ ~30!.
However, we note that forq̃51 the two-replica partition
function G(N;q̃51) is simply the square of the single
replica partition functionG(N). Thus,G(N;q̃51)5G2(N)
;N22u0z0

2N(q) according to Eq.~23!. Since we just con-

vinced ourselves thatû can take on only two possible value
namely,a and 3/2, and since 2u053Þ3/2, we conclude that
a52u053.2 and moreoverq2<q̂c(q). Thus, we do ex-

7Note that the critical valueq̂c(q) depends throughQ̂ on q but not
on q̃.

e
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pect the phase transition to occur atq̂c(q).0. However, it is
not clear from this calculation if the system atq̃51 ~or q̂
5q2! is exactly at or strictly below the phase transitio
point. We leave it to the exact solution of the two-repli
problem presented in the next two appendixes to estab
that q̂5q2 is indeed strictly below the phase transition po
and that therefore disorder is perturbatively irrelevant.

We note that, in the context of thef4 theory or the self-
consistent treatment of the self-interacting polymer, the
sult a53 implies that the embedding spatial dimension
d56. Thus, the two-replica problem corresponds to the
naturation of a single RNA molecule in six spatial dime
sions. The bubblesQ of Fig. 6, which originate from the
branching entropy of the individual RNA molecules, play t
role of the spatial configurational entropy of the sing
stranded RNA in the denaturation problem.

APPENDIX B: SOLUTION OF THE TWO-REPLICA
PROBLEM

In this appendix, we present the exact solution of the tw
replica problem. While most of the details are given here,
most laborious part is further relegated to Appendix C.

1. Implicit equation for the two-replica problem

We start by introducing an auxiliary quantityW(N,n;q̃).
This is a restricted two-replica partition function, summi
over all independent secondary structures of a pair of R
molecules of lengthN21 bases in which there are exact
n21 exterior bases of the common bond structure8 all of
which are completely unbound in both replicas. Since
exterior bases form one of the bubbles of the common-b
structure, the possible binding configurations of these e
rior bases are described byQ(n). Thus, the full partition
function of the two-replica problem can be calculated fro
this restricted partition function as

G~N;q̃!5 (
n51

N

W~N,n;q̃!Q~n!. ~B1!

Now, let us formulate a recursion relation forW by adding
one additional baseN to each of the two RNA molecules. W
can separate the possible configurations of the new func
W(N11,n;q̃) according to the possibilities that the ne
baseN is either not involved in a common bond or forms
common bond with base 1< i ,N. This yields the recursion
relation

W~N11,n;q̃!5W~N,n21;q̃!1q2q̃ (
i 5n

N21

W~ i ,n;q̃!

3G~N2 i ;q̃! ~B2!

8An exterior base of a secondary structure is a base that coul
bound to a fictitious base at positionN11 without contravening the
no-pseudoknot constraint.
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for N>2 andn>1. The applicable boundary conditions a
W(N,N21;q̃)50, W(N,N;q̃)51, and W(N,n;q̃)50 for
eachn.N>1 andW(N,0;q̃)5dN,0 .

At this point, it is convenient to introduce thez transforms
in order to decouple the discrete convolution in Eq.~B2!.
They are

Ĝ~z;q̃![ (
N51

`

G~N;q̃!z2N,

Q̂~z![ (
N51

`

Q~N!z2N,

and

Ŵ~z,n;q̃![ (
N51

`

W~N,n;q̃!z2N5 (
N5n

`

W~N,n;q̃!z2N.

Using Eq.~B2! and the boundary conditions we get

zŴ~z,n;q̃!5 (
N5n

`

W~N,n,q̃!z2~N21!

5z2n211 (
N5n11

`

W~N11,n;q̃!z2N

5z2~n21!1 (
N5n11

`

W~N,n21;q̃!z2N

1q2q̃ (
N5n11

`

(
i 5n

`

W~ i ,n;q̃!z2 i

3G~N2 i ;q̃!z2~N2 i !

5Ŵ~z,n21;q̃!1q2q̃Ŵ~z,n;q̃!Ĝ~z;q̃!.

This can be solved forŴ(z,n;q̃) with the result

Ŵ~z,n;q̃!5
1

z2q2q̃Ĝ~z;q̃!
Ŵ~z,n21;q̃!. ~B3!

Together with the boundary conditionŴ(z,0;q̃)51, we get

Ŵ~z,n;q̃!5@z2q2q̃Ĝ~z;q̃!#2n. ~B4!

If we now multiply Eq.~B1! by z2N and sum both sides ove
N we get

Ĝ~z;q̃!5 (
n51

`

Ŵ~z,n;q̂!Q~n! ~B5!

which, upon inserting Eq.~B4!, becomes an implicit equa
tion

Ĝ~z;q̃!5Q̂„z2q2q̃Ĝ~z;q̃!… ~B6!

be
3-18
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for the full partition functionĜ(z;q̃), provided that we know

the functionQ̂.

SinceQ̂ does not depend onq̃, we can find its form using
the following strategy. Ifq̃51, a common bond does no
contribute any additional Boltzmann factor. Thus, the tw
replica partition function for this specific value ofq̃ is just
the square of the partition function of a single uniform
attracting RNA molecule, i.e.,

G~N;q̃51!5G2~N!. ~B7!

Since we knowG(N) through the exact expression~22! for

its z transform Ĝ, we can regardĜ(z;q̃51) as a known
function, even though a closed form expression is not av
able. From Eq.~B6!, we have

Ĝ~z;q̃51!5Q̂„z2q2Ĝ~z;q̃51!…. ~B8!

This is an equation forQ̂ in terms of the known function

Ĝ(z;q̃51). After we solve it forQ̂ below, we can use Eq

~B6! to solve for the only leftover unknown,Ĝ(z;q̃), for
arbitrary values ofq̃.

2. Solution in the thermodynamic limit

In the thermodynamic limit, it is sufficient to conside

only the singularities of thez transform Ĝ(z;q̃). From the

form of Ĝ in the vicinity of the singularityz(q̃), the two-
replica partition functionG(N;q̃) is readily obtained by the
inversez transform, with the result

G~N;q̃!5A~ q̃!N2uzN~ q̃!. ~B9!

The result immediately yields the free energy per len
f 52kBT ln z. More significantly, the exponentu reveals
which phase the two-replica system is in: forq̃51 ~i.e., no
disorder!, the two-replica system is just a product of tw
independent single-replica systems and we must haveu53
as implied by the single-replica partition functionG(N) in
Eq. ~23!. On the other hand, forq̃→`, the two replicas are
forced to be locked together and behave as a single rep
In this case, we must haveu53/2. As we will see,u53 and
3/2 are the only values this exponent can take on for
system; it indicates whether or not the two replicas
locked, and hence whether or not the effect of disorde
relevant.

The singularityz(q̃) of Ĝ(z;q̃) is given implicitly by Eq.
~B6!, which we now analyze in detail. We start by recallin
the solution of the homogeneous single-RNA problem,
~23!. From the relation ~B7!, we have G(N,q̃51)
5A0

2(q)N22u0z0
2N for large N, with u053/2, z05112Aq,

and A0(q) given in Sec. II B 2. Hence, thez transform

Ĝ(z;q̃51)5(NG(N;q̃)z2N is defined on the interva
@z0

2,`@ . It is a decreasing function ofz, terminating with a
singularity atz5z0

2, which produces theu53 monotonically
singularity inG(N;q̃51).
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From Eq.~B8!, the same singularity must occur inQ̂(z)
at z5z(0)[z0

22q2g1 , where

g1[Ĝ~z0
2;q̃51!5 (

N51

`

G~N!2z0
22N ~B10!

is a positive number and does not depend on anything

but q. Sincez2q2Ĝ(z;q̃51) is a smooth monotonically in
creasing function which maps the interval@z0

2,`@ into the

interval @z~0!, `@, it follows from Eq. ~B8! that Q̂(z) is a
smooth, monotonically decreasing function which maps
interval @z~0!, `@ into the interval ]0,g1].

Now that we have characterizedQ̂(z) in detail, we can

proceed to studyĜ(z;q̃) for arbitraryq̃. Clearly, according to

Eq. ~B6!, Ĝ(z;q̃) has a singularity leading tou53 at z
5z1(q̃), defined implicitly by

z1~ q̃!2q2q̃Ĝ„z1~ q̃!;q̃…5z~0!, ~B11!

becauseQ̂(z) has this singularity atz5z(0). Again accord-

ing to Eq. ~B6!, we haveĜ„z1(q̃);q̃…5Q̂„z(0)…5g1 inde-
pendent ofq̃. This leads to one of the key results:

z1~ q̃!5z~0!1q2q̃g15~112Aq!21q2~ q̃21!g1 .
~B12!

If z5z1(q̃) is the only singularity ofĜ(z;q̃), it implies
that there is only one phase withu53, and the free energy
per length of the two-replica system is given by

f 152kBT ln@~112Aq!21q2~ q̃21!g1# ~B13!

for all values ofq̃. By differentiating this with respect toq̃,
we obtain the fraction of common contacts

s15
q2q̃g1

~112Aq!21q2q̃g1

~B14!

in this phase as a function ofq̃. For very large disorder, i.e.
for largeq̃, this fraction converges to 1. However, since it
the fraction of bonds divided by the total number of bas
and every base pair has two bases, it has to be bounded
above by 1/2. Thus, we conclude that Eq.~B13! cannot be
the free energy of the two-replica system for allq̃’s.

At least for largeq̃, there must be another singularity o

Ĝ(z;q̃) that will yield a different expression for the free en
ergy to give a physically reasonable fraction of comm
bonds.

In order to find this other singularity, we introduce th

inverse functionẐ(g;q̃) of Ĝ(z;q̃). From Eq.~B6!, it fol-
lows that for anyq̃ and anygP]0,g1],

Ĝ„Ẑ~g;q̃!;q̃…5Q̂@Ẑ~g;q̃!2q2q̃Ĝ„Ẑ~g;q̃!;q̃…#

⇒g5Q̂@Ẑ~g;q̃!2q2q̃g#
3-19
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⇒Q̂21~g!5Ẑ~g;q̃!2q2q̃g.

SinceQ̂21(g) does not depend onq̃, we can eliminate it by
evaluating the last equation above at the special valueq̃51
and write

Ẑ~g;q̃!5Ẑ~g;1!1q2~ q̃21!g, ~B15!

where Ẑ(g;1) is the inverse of the known functionĜ(z;q̃
51). Equation~B15! is now an explicit solution for the

inverse ofĜ(z;q̃) for arbitrary q̃, and the singularity ofẐ,

located atg5g2(q̃) and Ẑ(g2 ,q̃)5z2(q̃), yields the free
energy of the two-replica system, i.e.,f 252kBT ln z2, in
this phase.

While Appendix C derives the position of the domina
singularity present in Eq.~B15! rigorously, we will resort to

some intuitive argument here. SinceĜ(z;1) is a monotoni-

cally decreasing, convex function, so is its inverseẐ(g;1).
The latter function ends at the point (g1,z0

2) with some slope
z8,0 in a singularity that produces theu53 behavior in-
dicative of two independently fluctuating uniformly sel
attracting replicas. This is shown in Fig. 16 as the solid li
According to Eq.~B15!, we can obtain the correspondin

function Ẑ(g;q̃) for arbitrary q̃ by simply adding a linear
functionq2(q̃21)g to this function. If the slopeq2(q̃21) of

this linear function is less than the smallest slope ofẐ(g;1),
i.e., if z81q2(q̃21),0, adding this linear function does no
qualitatively change anything~see the short-dashed line
Fig. 16.! The only singularity is still the one atg5g1 , and

FIG. 16. Inverse of the Laplace transformed partition funct

Ẑ(g;q̃) of the two-replica system at various values of the comm
bond interactionq̃. The solid line shows the free system witho
any interaction of common bonds. In the presence of an interac
the inverse function of the partition function can be obtained
adding a linear function to the free system function. If the inter
tion is not too strong~q̃,q̃c , short-dashed line! adding the linear
function with a small slope does not change the qualitative form
the partition function. In this case, the two-replica system is c
trolled by the singularity atg5g1 , which is independent ofq̃. At
stronger interactions.~q̃.q̃c , long-dashed line! the inverse func-
tion develops a minimum. Beyond this minimum it is not invertib
any more and the two-replica system is then dominated by the
gularity arising from this minimum.
03190
.

the corresponding value inz, i.e., z1(q̃)5Ẑ(g1 ;q̃), is trivi-
ally shifted by an amountq2(q̃21)g1 from z0

2 as q̃ varies.
Thus, the scaling behavior is characterized byu53 as if q̃
51 ~i.e., absence of disorders!, although the free energyf 1
52kBT ln z1(q̃) is shifted as already derived in Eq.~B13!.

If the final slopez81q2(q̃21) of the right hand side of
Eq. ~B15! is positive the situation becomes much differe

Upon adding the linear function,Ẑ(g;q̃) develops a mini-
mum at some position„g2(q̃),z2(q̃)…. Thus, the inverse

function Ĝ(z;q̃) has to be calculated from the left~small-g!

branch ofẐ(g;q̃) and has a square root singularity atz2(q̃).
This square root singularity implies that the characteris
exponent becomesu53/2, consistent with the picture that i
this phase the two replicas are locked together and fluct
as one single effective RNA molecule.

The positiong2(q̃) of the minimum is determined by th
root of the derivative, i.e., by

2q2~ q̃21!5
d

dgU
g5g2~ q̃!

Ẑ~g;1!

5F d

dgU
z5Ẑ„g2~ q̃!;1…

Ĝ~z;1!G21

. ~B16!

The corresponding valueẐ„g2(q̃);q̃… determines the location

of the square root singularityz2(q̃) of Ĝ(z;q̃), i.e., the free
energy per length of the two-replica problem.

z2(q̃) can be conveniently expressed in terms of the a

iliary quantity zc(q̃) defined throughg2(q̃)5Ĝ„zc(q̃);1… as

z2~ q̃!5Ẑ„g2~ q̃!;q̃…

5Ẑ„g2~ q̃!;1…1q2~ q̃21!g2~ q̃!

5zc~ q̃!1q2~ q̃21!Ĝ„zc~ q̃!;1….

Comparing this expression with Eq.~B13!, which is valid for
small q̃, we can summarize the complete solution in terms

zc~ q̃!5H the uniquezP]z0
2,`@ that ful-

fills ~d/dz!Ĝ~z;1!521/@q2~ q̃21!#, q̃.q̃c

z0
25~112Aq!2, q̃<q̃c ,

~B17!

where

q̃c[12
z8

q2.1, ~B18!

and

z8[
1

~d/dz!uz5z
0
2Ĝ~z;q̃51!

52
1

(
N51

`

NG~N!2z0
22~N21!

.

~B19!

-

n,
y
-

f
-

n-
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In terms of thiszc(q̃), the smallest singularity ofẐ(z;q̃)
is located at

z~ q̃!5zc~ q̃!1q2~ q̃21!Ĝ„zc~ q̃!;1…. ~B20!

The free energy per length of the two-replica system is gi
by

f 52kBT ln@zc~ q̃!1q2~ q̃21!Ĝ„zc~ q̃!;1…# ~B21!

and the fraction of common bonds is

s5
q2q̃Ĝ„zc~ q̃!;1…

zc~ q̃!1q2~ q̃21!Ĝ„zc~ q̃!;1…
. ~B22!

This fraction of common bonds turns out to be continuous
the phase transition but it exhibits a jump in its slope aq̃
5q̃c .

In the caseq̃<q̃c , these simplify to Eqs.~B13! and~B14!
@or Eqs. ~34! and ~35!, respectively#, with zc(q̃)5z0

2 inde-
pendent ofq̃. The type of singularity of the Laplace tran
formed partition function is the same as atq̃51, resulting in
u53. For q̃.q̃c , we cannot write down a closed form ex
pression forz(q̃) any more. But it is given implicitly in
terms of the solution of Eq.~B17!; it involves only single-
replica quantities and can thus be evaluated numeric
Moreover, we have seen that the dominant singularity in
regime is a square root singularity, implyingu53/2.

APPENDIX C: THE FREE ENERGY OF THE
TWO-REPLICA PROBLEM

In this appendix we give a derivation of the position
the nontrivial singularity in the Laplace transform of the pa

tition function Ĝ(z;q̃). A more intuitive, graphical derivation
of this result was given in Appendix B. Using Eq.~B15!, we
start by calculating

d

dz
Ĝ~z;q̃!5F d

dgU
g5Ĝ~z;q̃!

Ẑ~g;q̃!G21

5F d

dgU
g5Ĝ~z;q̃!

Ẑ~g;1!1q2~ q̃21!G21

5FF d

dzU
z5Ẑ„Ĝ~z;q̃!;1…

Ĝ~z;1!G21

1q2~ q̃21!G21

.

g-
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ng
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This expression obviously has a singularity atz2(q̃) which is
defined by

d

dzU
z5Ẑ~ Ĝ„z2~ q̃!;q̃…;1!

Ĝ~z;1!52
1

q2~ q̃21!
. ~C1!

Since (d/dz)Ĝ(z;1)P@1/z8,0@ , this is only possible for

q̃>q̃c[12
z8

q2 .

For smaller values ofq̃, there is no other singularity and th
free energy per length is given by Eq.~B13!.

If q̃>q̃c the additional singularityz2(q̃) exists and is—as
we will see below—always smaller than the singular
z1(q̃). Thus, the free energy per length is given by the s
gularity z2(q̃) in the strong coupling phase, i.e., forq̃>q̃c .

At first sight, Eq. ~C1! still looks as if z2(q̃) could be

calculated only if the full functionĜ(z;q̃) is known. How-
ever, for anyq̃>q̃c we can definezc(q̃) to be the unique
solution of the equation

dz

d U
z5zc~ q̃!

Ĝ~z;1!52
1

q2~ q̃21!
.

This quantity depends only on the functionĜ(z;1). Accord-
ing to Eq. ~C1!, z2(q̃) and zc(q̃) are related by

Ẑ(Ĝ„z2(q̃);q̃…;1)5zc(q̃). This implies that Ĝ„z2(q̃);q̃…

5Ĝ„zc(q̃);1…. On the other hand, Eq.~B15! applied tog

5Ĝ„z2(q̃);q̃… yields

z2~ q̃!5Ẑ~ Ĝ„z2~ q̃!;q̃…;q̃!

5Ẑ~ Ĝ„z2~ q̃!;q̃…;1!1q2~ q̃21!Ĝ„z2~ q̃!;q̃…

5zc~ q̃!1q2~ q̃21!Ĝ„zc~ q̃!;1…

which is, finally, an expression that involves only quantiti

of the noninteracting system. Sincez1q2(q̃21)Ĝ(z;1)

5Ẑ„Ĝ(z;1);q̃… is a monotonic function on the interva
@z0

2,zc(q̃)#, we always havez2(q̃)<z1(q̃) with equality if
and only if zc(q̃)5z0

2, i.e., for q̃5q̃c . Therefore, the free
energy per length is indeed given by

f 252kBT ln@zc~ q̃!1q2~ q̃21!Ĝ„zc~ q̃!;1…#

for any q̃>q̃c .
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